Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pfadfinder im Weltall

11.07.2001


Fotomontage des APEX-Teleskops vor dem Hintergrund der Chajnantor Hochebene, mit Vicunas. (Zeichnung: VERTEX, Foto: Peter Schilke).


Neue Wege will das Max-Planck-Institut für Radioastronomie in Bonn mit dem Atacama Pathfinder Experiment, kurz APEX, gehen. Um interessante Objekte im Universum genauer zu untersuchen und deren Radiostrahlung bis zu Wellenlängen weit unter 1 mm zu messen, wird in der chilenischen Atacama-Wüste in einer Höhe von 5000 Metern über dem Meeresspiegel für ca. zwölf Millionen DM ein Radioteleskop errichtet. Die Beobachtung von ältesten Galaxien und Sternentstehungsgebieten soll unser Verständnis der Bildung von Strukturen im Universum erweitern. Am 2. Juli 2001 wurde der Vertrag zum Bau der Antenne unterschrieben, und schon im März 2003 soll die Anlage in Betrieb gehen.

APEX entsteht genau zur richtigen Zeit am richtigen Ort, um einige brennende Fragen der Astronomie zur Entstehung von Sternen und Galaxien anzugehen. Dieses Instrument wird den europäischen Forschern, besonders den Mitarbeitern des Max-Planck-Instituts für Radioastronomie, eine Spitzenstellung in diesem attraktiven Forschungsgebiet sichern, und es verschafft ihnen eine exzellente Ausgangsposition für Großprojekte wie dem ALMA-Interferometer, dem SOFIA-Flugzeugobservatorium und dem HERSCHEL-Satelliten, so Projektwissenschaftler Dr. Peter Schilke.

Die Beobachtungen im Submillimeter-Wellenlängenbereich erlauben einen ungetrübten Blick auf Sternentstehungsgebiete und Galaxienkerne, so auch auf das Zentrum unserer Milchstraße. Selbst die ältesten Galaxien und winzige Schwankungen in der kosmischen Hintergrundstrahlung, die das gesamte Universum ausfüllt, können beobachtet werden. Ermöglicht werden solche Messungen von der Erde aus durch immer genauere Teleskopspiegel und immer empfindlichere Empfänger. Die chilenische Wüste bietet optimale irdische Bedingungen für solche Untersuchungen, denn dort ist die Atmosphäre schon recht dünn und der Himmel nur selten bewölkt. Es wird daher weniger Strahlung absorbiert. Das Gelände ist ganzjährig zugänglich, im Gegensatz zum Südpol, der eine ähnlich gute Atmosphäre hat.

Mit APEX stößt das Max-Planck-Institut für Radioastronomie in neue Dimensionen vor. Das 100-m-Radioteleskop in Effelsberg in der Eifel, nur 40 Kilometer vom Institut in Bonn entfernt, war lange das größte voll bewegliche Radioteleskop der Welt. Seit 30 Jahren erforscht es den Weltraum im Wellenlängenbereich von 70 cm bis 3,5 mm. Das 2920 m hoch gelegene IRAM 30-m-Radioteleskop auf dem Pico Veleta in Spanien ermöglicht auf Grund der hohen Präzision der Spiegeloberfläche Messungen bis zu einer kürzesten Wellenlänge von 0,8 mm. Noch etwas höher liegt das 10-m-Heinrich Hertz-Teleskop (HHT) auf dem Mount Graham (3180 m) in Arizona/USA. Hier dringt man in den Submillimeter-Bereich vor: es misst bis zu einer kürzesten Wellenlänge von 0,34 mm.

APEX wird das vierte am Institut entwickelte Messinstrument sein und Pionierarbeit im Terahertz-Bereich leisten, das bedeutet bis hinunter zu Wellenlängen von 0,3 bis 0,15 mm. Submillimeter-Beobachtungen, die am HHT nur selten möglich sind, werden alltäglich sein. In diesen Wellenlängenbereichen sieht man Objekte, die mit den im optischen oder infraroten Spektralbereich arbeitenden Großteleskopen, wie dem VLT der ESO, gar nicht zu sehen sind: in Staubhüllen eingebettete junge Sterne und Galaxien, oder Protosterne, die einfach zu kalt sind, um bei infraroten Wellenlängen zu strahlen, im Submillimeter-Bereich aber sehr hell sind. Leider blockiert die Erdatmosphäre einen Teil dieser Strahlung, so dass man gezwungen ist, die Teleskope auf unwirtliche Berggipfel zu bauen. Zudem kann vom Standort in Chile der bisher bei diesen Wellenlängen noch fast unerforschte Südhimmel untersucht werden. Das Zentrum der Milchstraße, die Magellanschen Wolken und Centaurus A, die nächste Galaxie mit einem aktiven Kern, sind die prominentesten Objekte.

Der Bau und Betrieb der Anlage, die neben der Antenne mit Sauerstoff angereicherte Kontroll-, Labor- und Wohnräume umfasst, stellt eine besondere Herausforderung dar. Auch hier sind die Wissenschaftler gewissermaßen Pfadfinder. Leben und Arbeiten in dieser Höhe, also mehr als 2000 Meter höher als die Zugspitze, erfordern eine gute körperliche Konstitution. Es gibt nur noch etwa halb so viel Sauerstoff wie auf Meereshöhe. Nach sechs Stunden Aufenthalt zwingen bohrende Kopfschmerzen oft zum Abstieg in lebensfreundlichere Gebiete. Aber alle Widrigkeiten nehmen die Forscher in Kauf, weil die Messungen grundlegend neue Erkenntnisse versprechen.

Die Initiative für dieses Projekt ergriff Prof. Karl Menten, Geschäftsführender Direktor des Bonner Max-Planck-Instituts für Radioastronomie. Forschungsschwerpunkte seiner Gruppe sind sehr junge und sehr alte Sterne, außerdem Galaxien im frühen Universum; ideale Objekte, um mit APEX erforscht zu werden.

Gebaut wird die 12-m-Antenne von der VERTEX Antennentechnik GmbH in Duisburg in nur 20 Monaten. Die Oberfläche muss eine Genauigkeit von 0,018 mm aufweisen; dadurch erst werden Beobachtungen im Terahertz-Bereich möglich. Die Antenne ist eine modifizierte Kopie einer ALMA-Prototypantenne, was sowohl Kosten spart als auch die schnelle Konstruktion erlaubt. Umfangreiche Modifikationen sind jedoch erforderlich, weil APEX mehr Instrumente beherbergen soll als die einzelnen Antennen des ALMA-Interferometers.

Projektwissenschaftler Dr. Peter Schilke hat Submillimeter-Astronomie am Caltech Submillimeter Observatory des California Institute of Technology auf dem Mauna Kea, Hawaii, gelernt. Er war dort vor allem in chemische Studien involviert, die zur Erstentdeckung von mehreren Molekülen im interstellaren Raum führten.

Die Max-Planck-Gesellschaft und das Astronomische Institut der Ruhr-Universität Bochum (Prof. Rolf Chini) finanzieren die Errichtung des Teleskops mit insgesamt zwölf Millionen DM. Nach der Aufbauphase übernehmen die ESO (European Southern Observatory) und das schwedische Onsala Space Observatory einen Teil der Betriebskosten und erhalten dafür anteilig Beobachtungszeit.

Neben dem Max-Planck-Institut für Radioastronomie sind mehrere Forschungsgruppen anderer Max-Planck-Institute und deutscher Universitäten an der Nutzung des APEX-Teleskops interessiert, u.a. das Max-Planck-Institut für extraterrestrische Physik in Garching, das Max-Planck-Institut für Aeronomie in Lindau, das Max-Planck-Institut für Astrophysik in Garching sowie Astronomen der Universitäten Köln und Bonn.

Wirkliche Pfadfinder-Funktion leistet APEX für ALMA, das Atacama Large Millimeter Array. Diese Anlage soll - von Europa, den USA und Japan zu je einem Drittel finanziert - voraussichtlich ab dem Jahr 2005 am gleichen Standort gebaut werden und aus insgesamt 64 Einzelteleskopen bestehen. Bis dahin kann APEX die Arbeitsbedingungen testen, die einzelnen Geräte prüfen, Empfänger erproben und schon die interessantesten Objekte finden und erforschen, deren detaillierte Untersuchung mit ALMA erfolgt. Dann soll das APEX-Teleskop weiter genutzt werden, entweder als Bestandteil von ALMA oder weiterhin als Kundschafter für die Großanlage.


Projektwissenschaftler:

... mehr zu:
»APEX »Antenne »Galaxie »Universum


Dr. Peter Schilke,
Telefon: 0228/525-392

E-Mail: schilke@mpifr-bonn.mpg.de

Öffentlichkeitsarbeit:

Dr. Rolf Schwartz,
Telefon: 0228/525-303
Fax: 0228/525-438
E-Mail: rschwartz@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Telefon: 0228/525-399
E-Mail: njunkes@mpifr-bonn.mpg.de

Elisabeth Lahr-Nilles,
Telefon: 0228/525-246
E-Mail: elahr@mpifr-bonn.mpg.de

| Presseinformation
Weitere Informationen:
http://www.mpifr-bonn.mpg.de/

Weitere Berichte zu: APEX Antenne Galaxie Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie