Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kollidierende Galaxien wecken schlafende Schwarze Loecher

10.02.2005


Phasen der Verschmelzung zweier Galaxien mit zentralen Schwarzen Löchern. Von oben nach unten zeigen die Bilder der Sequenz das Gas zweier kollidierender Spiralgalaxien. Nach der ersten Begegnung entfernen sich diese zunächst wieder, um dann bei einer zweiten Begegnung und anschließenden Verschmelzung zusammenzufallen. Die Schwerkraft treibt dabei Gas ins Zentrum der Galaxienkerne und führt zur Bildung ausgedehnter Gezeitenarme. In der Quasar-Phase gewinnen die Schwarzen Löcher stark an Masse. Diese Phase dauert bis zu 100 Millionen Jahre und setzt genügend Energie frei, um das Gas aufzuheizen und in den Raum zu schleudern. Zurück bleibt eine elliptische Galaxie (deren Sterne nicht gezeigt sind), die kaum noch Gas enthält und in deren Zentrum die beiden Schwarzen Löcher verschmolzen sind. Der gesamte Prozess der Galaxienverschmelzung dauert etwa 2 Milliarden Jahre und kann in einem Film im Internet betrachtet werden (http://www.mpa-garching.mpg.de/galform/press). Bild: Max-Planck-Institut für Astrophysik


Deutsch-amerikanisches Astrophysikerteam klärt erstmals, welcher Zusammenhang zwischen Quasaren, Schwarzen Löchern und der Entwicklung von Galaxien besteht


In der Frühphase des Universums besaßen viele Galaxien extrem leuchtkräftige Kerne, so genannte Quasare. Seit längerem hatte man bereits vermutet, dass die Leuchtkraft der Quasare durch superschwere Schwarze Löcher im Zentrum der Galaxien erzeugt wird. Zudem steht die Masse dieser Schwarzen Löcher in enger Beziehung zur Geschwindigkeitsverteilung der Sterne in der kugelförmigen Zentralregion der jeweiligen Wirtsgalaxie. Auch das legt einen gemeinsamen Entstehungsprozess nahe. Wissenschaftlern des Max-Planck-Instituts für Astrophysik und der Harvard Universität, USA, ist es nun gelungen, sowohl die Sternentstehung als auch das Wachstum von Schwarzen Löchern in Computersimulationen miteinander kollidierender Galaxien direkt zu verfolgen. Sie zeigen, dass die Quasaraktivität so viel Energie freisetzt, dass große Mengen Gas aus dem Galaxienzentrum herausgeschleudert werden, was sowohl die Sternentstehung als auch das weitere Wachstum der Schwarzen Löcher begrenzt. Damit konnten die Forscher klären, wodurch die Lebensdauer von Quasaren begrenzt wird und welch enger Zusammenhang zwischen der Masse eines Schwarzen Lochs und der Geschwindigkeit der Sterne im Zentrum einer Galaxie besteht.

In den heutigen Vorstellungen über die Entstehung von galaktischen Sternsystemen spielen Kollisionen und Verschmelzungen von Galaxien eine entscheidende Rolle. Dadurch sind im Laufe der Zeit immer größere Galaxien mit veränderter Gestalt entstanden - aus verschmelzenden Spiralgalaxien entwickelten sich elliptische Galaxien. Doch die jüngste Entdeckung superschwerer Schwarzer Löcher im Zentrum von Galaxien gibt den Forschern neue Rätsel auf. So ist nicht klar, wieso die Masse Schwarzer Löcher mit der Größe der kugelförmigen Zentralregion einer Galaxie korreliert ist. Sind Schwarze Löcher also nur eine interessante Randerscheinung bei der Entstehung von Galaxien oder bestimmen sie diesen Prozess gar in ganz entscheidender Weise?


Antworten auf diese Fragen können komplexe Computersimulationen liefern, die sowohl die gravitative Dynamik einzelner Galaxien als auch wesentliche Aspekte der Physik der Sternentstehung und des Wachstums von Schwarzen Löchern berücksichtigen. Tiziana Di Matteo und Volker Springel vom Max-Planck-Institut für Astrophysik und Lars Hernquist von der Harvard Universität haben dazu neue Wege der numerischen Modellierung beschritten: Sie repräsentieren das superschwere Schwarze Loch erstmals mit einem Simulationsteilchen, das aus seiner Umgebung Gas aufsaugen kann, und zwar mit einer Rate, die aus einer einfachen theoretischen Modellbildung abgeleitet ist. Auf diese Weise ist es möglich, ganze Galaxien gleichzeitig mit den darin enthaltenen und wachsenden Schwarzen Löchern zu simulieren.

Aufgrund von Reibung in den Strömungen um Schwarze Löcher herum wird das einfallende Gas auf enorme Temperaturen aufgeheizt und gibt dadurch energiereiche Strahlung ab. Tatsächlich werden etwa 10 Prozent der gesamten Ruheenergie (E = mc2) des Gases freigesetzt, bevor es selbst im Ereignishorizont des Schwarzen Lochs verschwindet. Hierbei handelt es sich um riesige Energiemengen, die supermassive Schwarze Löcher zu wahren Monstern machen, den stärksten bekannten Energiequellen im Universum überhaupt. Während ein Großteil der energiereichen Strahlung aus dem Zentrum der Galaxie entkommt, heizt ein kleinerer Teil das Gas in der größeren Umgebung des Schwarzen Lochs auf. Das Team um Dr. Di Matteo nimmt an, dass etwa 5 Prozent der Strahlung zu dieser Heizung beitragen.

Die Simulationen haben nun gezeigt, dass diese Energie das Verschmelzen von Spiralgalaxien wesentlich beeinflusst. Kollidieren die Galaxien, so treiben gravitative Gezeitenkräfte diffus verteiltes Gas in ihr Zentrum . Dort wird es solange verdichtet, bis es zu einem intensiven Ausbruch der Sternbildung kommt, einem Starburst. Dabei "füttert" das einströmende Gas auch das im Zentrum sitzende superschwere Schwarze Loch, das dadurch rasch an Masse gewinnt. Die dabei wiederum freigesetzte Energie heizt das umgebende Gas stark auf. Die Abbildung zeigt Verteilung und Temperatur des Gases in verschiedenen Phasen der Verschmelzung zweier Galaxien mit Milchstraßengröße. Je schwerer das Schwarze Loch, desto schneller wächst es, sodass auch die Rate, mit der Energie freigesetzt wird, rasch ansteigt. Das Zentrum der Galaxie leuchtet dabei als Quasar. Doch schließlich wird der Druck in dem aufgeheizten Gas zu groß - ein mächtiger Wind entsteht, der das noch in der Galaxie vorhandene Gas aus ihrem Zentrum schleudert und damit die Quasar-Phase und die Sternentstehung abrupt beendet.

Tiziana Di Matteo, Volker Springel und Lars Hernquist haben eine ganze Serie von Kollisionen von unterschiedlich großen Galaxien untersucht. Sie zeigen, dass in größeren Galaxien immer mehr Gas für die "Fütterung" eines Schwarzen Lochs zur Verfügung steht und das Gravitationspotenzial, in dem das Gas gebunden ist, tiefer wird, sodass die Schwarzen Löcher zu immer größeren Massen anwachsen müssen, bevor ihre freigesetzte Energie ausreicht, um die Quasaraktivität durch Herausschleudern des Gases zu stoppen. Das Wachstum erweist sich somit als ein sich selbst begrenzender Prozess, der zudem mit der gleichzeitigen Entstehung der kugelförmigen Sternpopulation im Zentrum der Galaxie verknüpft ist: Zwischen der Größe dieser Sternpopulation und der Masse des Schwarzen Lochs in dem Verschmelzungsprodukt besteht also ein direkter Zusammenhang. Ein Vergleich mit astronomischen Messdaten zeigt, dass diese ersten selbstkonsistenten Simulationen für das Wachstum von Schwarzen Löchern die wichtigsten Beobachtungsdaten bereits mit bemerkenswerter Übereinstimmung reproduzieren.

Diese Ergebnisse sind für das Standardmodell der hierarchischen Galaxienentstehung sehr weitreichend: Die Aktivität eines Schwarzen Lochs hat also große Auswirkungen auf seine Wirtsgalaxie, da es die Entstehung von Sternen während der Galaxienverschmelzung beeinflusst und durch das Aufheizen des Gases einer späteren Sternentstehung entgegenwirkt. So sind die entstehenden elliptischen Galaxien verhältnismäßig arm an Gas und bilden kaum noch Sterne; ihre Sternpopulationen altern daher schnell und entwickeln jene roten Spektralfarben, wie man sie in vielen massereichen elliptischen Galaxien heute beobachten kann. Ohne den Einfluss der Schwarzen Löcher konnte man die Farben dieser "toten" elliptischen Galaxien bisher nicht befriedigend erklären.

Galaxienentstehung und das Wachstum supermassereicher Schwarzer Löcher erscheinen also als ein eng verzahnter Vorgang, der in theoretischen Modellen künftig als eine Einheit behandelt werden muss. Hydrodynamische Computersimulationen sind eines der vielversprechendsten Mittel, um weitere Einsichten in diese Verknüpfung zu gewinnen.

Dr. Volker Springel | Max-Planck-Update
Weitere Informationen:
http://www.mpg.de
http://www.mpa-garching.mpg.de/galform/press

Weitere Berichte zu: Computersimulation Galaxie QUASAR Sternpopulation Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie