Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitet das Gehirn anders als wir denken?

02.02.2005


Während in Modell-Netzwerken, in denen jede Nervenzellen mit allen anderen verknüpft ist, die Transienten sehr kurz sind (Abb. links), treten bei komplizierterer Verschaltung der Nervenzellen sehr lange Transienten auf (Abb. rechts). Dies würde nach der Standardtheorie dazu führen, dass ein "Gedanke" praktisch nie oder erst nach sehr langer Zeit komplettiert würde. Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation vermuten daher, das Gehirn könnte daher doch anders arbeiten als wir denken und die Transienten zur Verarbeitung von Informationen benutzen. Bild: Max-Planck-Institut für Dynamik und Selbstorganisation


Max-Planck-Forscher haben eine neue Form robuster Synchronisation in komplexen neuronalen Netzwerken entdeckt

... mehr zu:
»Attraktor »Dynamik »Neuron »Transienten

Um einen Text verstehen oder Musik hören zu können, nutzen wir neuronale Netzwerke in unserem Gehirn. Diese bestehen aus Millionen von Nervenzellen (Neuronen), die auf komplizierte Art und Weise in Netzwerken zusammengeschaltet sind. Bisher ging man davon aus, dass die Dynamik eines neuronalen Netzwerks schnell in einen stationären Zustand, einen so genannten Attraktor, mündet. Nach der allgemein akzeptierten Standardtheorie des assoziativen Gedächtnisses bedeutet die Konvergenz zu einem Attraktor das Erfüllen einer Aufgabe, wie zum Beispiel das Erkennen eines Gesichts. Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen (vormals MPI für Strömungsforschung) haben jetzt herausgefunden, dass sich das kollektive Verhalten neuronaler Netzwerke bei einer komplizierter werdenden Struktur qualitativ stark verändern kann und die Repräsentation der Außenwelt nicht von Attraktoren sondern lang andauernden chaotischen Transienten bestimmt wird (Physical Review Letters, 10. Dezember 2004).
Unser Gehirn besteht aus Milliarden einzelner Neuronen, die über ein komplexes Netzwerk miteinander wechselwirken. Werden Neuronen aktiv, senden sie elektrische Pulse an andere Neuronen und beeinflussen so deren Dynamik. Nach der Standardtheorie des assoziativen Gedächtnisses löst das Gehirn eine Aufgabe, wie das Erkennen eines Gesichts, wenn die Aktivität seiner Neuronen ein bestimmtes Muster zeigt. Diese Muster, die das neuronale Netz schließlich erreicht und so lange beibehält, bis ein neuer Reiz - etwa die Wahrnehmung eines anderen Gesichts - eintritt, entsprechen Attraktoren der Netzwerkdynamik. Der neue Reiz erfordert weitere Informationsverarbeitung und führt im allgemeinen zu einem neuen Attraktor.

Die Dynamik, die das Netzwerk vorübergehend zwischen zwei Attraktoren zeigt, bezeichnet man als Transiente. Im Alltag treten Transienten zum Beispiel beim Einschalten einer Neonröhre auf: Bevor die Lampe beständig Licht abgibt (Attraktor), flackert sie einige Male während der Zündung (Transiente). Wie bei der Neonröhre ging man bisher auch bei neuronalen Netzen davon aus, dass Transienten kurz sind und Attraktoren sehr schnell erreicht werden. Nach der Theorie des assoziativen Gedächtnisses ist dies auch notwendig, da bei langen Transienten die Lösung neuer Aufgaben, also "das Denken", sehr lange dauern würde (s. Abb.).

Alexander Zumdieck, Marc Timme, Theo Geisel und Fred Wolf haben nun herausgefunden, dass die Attraktoren in bestimmten Netzen exzitatorisch (erregend) komplex verknüpfter Neuronen erst nach extrem langen Transienten erreicht werden. Die Wissenschaftler zeigen, dass solch dramatische Veränderungen im dynamischen Verhalten schon bei kleinen Änderungen der Netzwerkstruktur auftreten. Die typische Dynamik eines solchen Netzes wird also nicht durch die Attraktoren, sondern durch die Transienten bestimmt. Von daher könnten die Attraktoren in den neuronalen Netzen weniger wichtig sein als bisher angenommen.

So stellten die Max-Planck-Forscher fest, dass die mittlere Dauer der Transienten sehr schnell mit der Netzwerkgröße wächst. Sind beispielsweise 80 Prozent der möglichen Verknüpfungen in einem Netz hergestellt, erreicht ein Netzwerk aus nur 10 Neuronen, die zehn Mal pro Sekunde einen Puls aussenden, einen Attraktor erst nach etwa 10 Sekunden. Ein Netzwerk aus 100 Neuronen bräuchte dafür etwa 1011 (100 000 000 000) Jahre, also ungefähr einhundert Mal mehr als das Alter unseres Universums. Netzwerke dieser Größe erreichen also den Attraktor praktisch nicht.

Doch allein ein Kubikmillimeter unseres Gehirns enthält mehr als 10.000 Neuronen. Von daher dauert hier die Informationsverarbeitung mittels Attraktoren extrem lange und wäre für das Gehirn unpraktikabel. Dieser Befund legt ein neues Prinzip für die Funktionsweise dieser neuronaler Netzwerke nahe: Da die Transienten und nicht die Attraktoren der dominante dynamische Zustand des Netzwerkes sind, könnten diese dazu dienen, die Außenwelt darzustellen. Ihre Dynamik weist zwei für neuronale Verarbeitung intuitiv wichtige Charakteristika auf. Die Dynamik der Transienten ist einerseits chaotisch - kleine Abweichungen im Anfangszustand führen zu großen Unterschieden zu späteren Zeiten. Auf der anderen Seite ist sie auch robust, denn die Transienten zeigen eine neue, kollektive und dynamische Form der Synchronität: Die Neuronen bilden eine fast perfekt synchronisierte Gruppe, die kontinuierlich einzelne Neuronen emittiert und absorbiert. Die Dynamik der Transienten ist somit sowohl flexibel als auch robust -Eigenschaften, die für die neuronale Verarbeitung im Gehirn sinnvoll erscheinen.

Das Projekt wurde unterstützt durch die National Science Foundation, USA.
Verwandte Links:

[1] MPG-Presseinformation "Gibt es ein Tempolimit für das Denken?" vom 8. März 2004
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2004/pressemitteilung20040308/index.html

Alexander Zumdieck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Attraktor Dynamik Neuron Transienten

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE