Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Revolutionäres Elektronenstrahl-Mikroskop eröffnet der Nano-Optik an der Uni Graz neue Dimensionen

31.01.2005


Ein Nanometer ist ein Milliardstelmeter - nur um eine Vorstellung davon zu bekommen, in welch unvorstellbare "Größen"-Ordnungen die Nanowissenschaft vordringt. Die Nano-Optik am Institut für Physik der Karl-Franzens-Universität Graz hat auf der Forschungsreise in den Nanokosmos nun einen entscheidenden Vorsprung - dank eines neuen, einzigartigen Elektronenstrahl-Mikroskops.



Im Zuge der Uni-Infrastruktur-Initiative II des österreichischen Bundesministeriums für Bildung, Wissenschaft und Kultur hat die Karl-Franzens-Universität Graz ein Top-Gerät - Anschaffungswert 550.000 Euro - der deutschen Firma RAITH bekommen. Das "Raith 100-2", basierend auf einem Zeiss-Elektronenstrahl-Mikroskop, ist, so Ao.Univ.-Prof. Dr. Joachim Krenn, Leiter der Arbeitsgruppe Nano-Optik an der Uni Graz, ein Unikat. "Durch seine außergewöhnliche Präzision ermöglicht es die Herstellung von zwanzig Nanometer feinen Strukturen - eine absolute Spitzenleistung."



Über ein CAD-Programm am Computer bearbeiten die ForscherInnen eine hauchdünne (hundert Nanometer) Kunststoffschicht: Der Elektronenstrahl mit einem Durchmesser von zwei bis drei Nanometern erzeugt in dieser Schicht die erwähnten Strukturen. Durch die Bearbeitung entsteht eine Lochmaske, auf die anschließend Silber oder Gold aufgedampft wird. Das Ergebnis ist eine Metalloberfläche mit Nanostrukturen, die als Grundlage für optische Experimente dient.

In ihrer Forschung verfolgt die Nano-Optik an der Uni Graz ein ganz besonderes Ziel, nämlich Licht in immer kleinere Strukturen "einzusperren" und zu transportieren. Kein Schildbürgerstreich, sondern erfolgreiche Grundlagenforschung. Joachim Krenn: "Vielerorts wo die Elektronik an ihre Grenzen stößt, kann die Lichttechnologie deren Aufgaben übernehmen. Eine entsprechend miniaturisierte Lichttechnologie kann aber nur mit radikal neuen Konzepten erreicht werden, wie zum Beispiel der Leitung von Licht in Nanodrähten aus Silber oder Gold anstatt in herkömmlichen Glasfasern. Diese Metalldrähte mit fünfzig, zwanzig oder zehn Nanometern Durchmesser wären fein genug, um sie als Grundlage zur Datenverarbeitung oder für kleinste Sensoren heranzuziehen. Solche stark miniaturisierten Sensoren könnten bei einer Vielzahl technischer Anwendungen, etwa in Kraftfahrzeugen, für bessere Leistung und mehr Sicherheit sorgen."

Voraussetzung dafür, dass ein metallischer Nanodraht Licht transportieren könne, sei allerdings, dass seine Oberfläche die "richtigen" geometrischen Strukturen aufweist, so Krenn. Um herauszufinden, wie diese Nanostrukturen auszusehen haben, müssten viele verschiedene getestet werden, die es zunächst einmal herzustellen gelte. Dazu bedarf es einer hochsensiblen und -präzisen High-Tech-Ausstattung - je ausgefeilter die Technik, umso besser für die Forschung. Das "Raith 100-2" eröffnet den WissenschafterInnen entsprechend neue Möglichkeiten.

Es ist den ForscherInnen der Uni Graz schon gelungen, Licht in so genannten Nanoteilchen - das sind Goldpartikel von zehn bis hundert Nanometern Durchmesser - einzufangen. Je nach Form und Größe dieser Partikel erscheint das Licht in verschiedenen Farben. Joachim Krenn berichtet auch bereits von einer Anwendung der Forschungsergebnisse: "Eine Kooperation der Grazer WissenschafterInnen mit der Wiener High-Tech-Firma ATTOPHOTONICS und dem deutschen Unternehmen für Sicherheitstechnologie IDENTIF hat zur Entwicklung so genannter ,nano-optischer Siegel’ geführt, die kurz vor der Marktanwendung stehen. Bei diesen ,Siegeln’ werden die Farbeffekte der Nanoteilchen zum ,Brandsealing’ genutzt, also zur Kennzeichnung von Marken-Originalteilen, um sie fälschungssicher zu machen - vom Flugzeugersatzteil bis zur Kreditkarte." Und vielleicht werden die Erkenntnisse aus den Forschungen der Nano-Optik ja auch schon bald den GeldfälscherInnen graue Haare wachsen lassen.

Kontakt:
Ao.Univ.-Prof. Dr. Joachim Krenn
Institut für Physik der Universität Graz
Tel.: +43 (0)316/380-5207
E-Mail: joachim.krenn@uni-graz.at

Gudrun Pichler | idw
Weitere Informationen:
http://nanooptics.uni-graz.at

Weitere Berichte zu: Durchmesser Elektronenstrahl-Mikroskop Nano-Optik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops