Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gewogen und zu schwer befunden

21.01.2005


Kontrastverstärktes Infrarotbild von AB Doradus A und C. Der schwache, rötliche Begleiter, als winziger Punkt "bei 8 Uhr" sichtbar, ist 120-mal so lichtschwach wie der bläuliche Hauptstern. Der Winkelabstand von 0.156 Bogensekunden zwischen beiden Lichtquellen entspricht der Größe eines Groschen in 13 Kilometern Entfernung. Ein so enges und so ungleiches Paar wurde hier mit Hilfe der neuen NACO-SDI-Kamera am ESO-Very Large Telescope in Chile erstmals getrennt abgebildet. Die berechnete Umlaufbahn des Begleiters ist eingezeichnet. Bild: ESO/Max-Planck-Institut für Astronomie


Erste direkte Massenbestimmung sehr massearmer junger Sterne zeigt: Diese sind doppelt so schwer wie theoretisch erwartet


Zwar ist die Masse eines Sterns die für seinen Lebenslauf entscheidende Größe, aber für die masseärmsten Himmelskörper ist diese sehr schwer zu bestimmen. Mit Hilfe einer neuen, sehr leistungsfähigen Kamera ist es nun erstmals gelungen, einen der seltenen massearmen Begleiter eines "normalen" Sterns abzubilden. Aus den Beobachtungen ergibt sich, dass aufgrund von Unsicherheiten in den theoretischen Modellannahmen die Häufigkeit junger "Brauner Zwerge" und "frei fliegender" extrasolarer Planeten bisher überschätzt worden ist. Eine internationale Arbeitsgruppe um Laird Close, Steward Observatory, University of Arizona/USA, und Rainer Lenzen, Max-Planck-Institut für Astronomie in Heidelberg, berichtet jetzt in der Fachzeitschrift Nature (Nature, 20. Januar 2005) über diese Entdeckung.

Mit Hilfe der gewonnenen Aufnahme konnten die Forscher erstmals die Masse eines jungen, sehr massearmen Begleiters bestimmen. Das Objekt ist mehr als hundertmal schwächer als der Stern, an den es durch die Schwerkraft gebunden ist. Seine Masse beträgt das 93-fache der Masse des Planeten Jupiter, nahezu das Doppelte des Wertes, der sich aus heutigen theoretischen Modellrechnungen für ein Objekt mit seinen Eigenschaften ergeben würde. Damit müssen die gegenwärtigen Vorstellungen von einer Population "Brauner Zwerge" und die Existenz der viel diskutierten, noch masseärmeren "frei fliegenden" extrasolaren Planeten in Frage gestellt werden.


Braune Zwerge sind Himmelskörper, die eine mindestens 75-fache Masse als der Jupiter besitzen, die aber immer noch nicht genug ist, um in ihrem Zentralbereich wie echte Sterne zu brennen. Wenn angebliche Braune Zwerge doppelt so massereich sind wie bisher vermutet, dann sind viele von ihnen in Wahrheit doch normale massearme Sterne. Die kürzlich entdeckten "frei fliegenden" Planeten sind dann ihrerseits in Wahrheit Braune Zwerge.

Laird Close (Steward Observatory, Arizona), Rainer Lenzen (Max-Planck-Institut für Astronomie, Heidelberg) und ihre Kollegen haben jetzt den schwach leuchtenden, massearmen Begleiter AB Doradus C entdeckt, der den jungen Stern AB Doradus A in einem Abstand von nur 2.3 Astronomischen Einheiten umläuft. Eine Astronomische Einheit entspricht dem Radius der Umlaufbahn der Erde um die Sonne: In unserem Sonnensystem liegt der 2.3-fache Abstand von der Sonne im Asteroidengürtel knapp jenseits der Marsbahn.

Forscher, die nach sehr massearmen Objekten fahnden, untersuchen die unmittelbare Umgebung junger, sonnennaher Sterne, denn die massearmen Objekte strahlen am hellsten in ihrer frühen Jugend, bevor sie noch weiter kontrahieren und abkühlen. Seit den frühen 1990-er Jahren bestand der Verdacht, dass der bekannte Stern AB Doradus A, der nur 48 Lichtjahre von der Sonne entfernt und nur 50 Millionen Jahre alt ist, einen massearmen Begleiter hat, denn er "wackelt" am Himmel hin und her, wie wenn eine unsichtbare, ihn umlaufende Masse an ihm zerrte. Aber nicht einmal mit dem Weltraumteleskop Hubble gelang der direkte Nachweis des Begleiters, denn er war offenbar zu lichtschwach und stand dem größeren und viel helleren Stern zu nahe.

Close und Lenzen gelang mit ihren Kollegen aus Deutschland (Wolfgang Brandner), Spanien (Jose C. Guirado), Chile (Markus Hartung, Chris Lidman), und USA (Eric Nielsen, Eric Mamajek, and Beth Biller) die Abbildung des schwer zu fassenden Begleiters im Februar 2004 an einem der vier 8-Meter-Reflektoren des europäischen Very Large Telescope der ESO in Chile. Dabei setzten sie die neue, von Rainer Lenzen am MPI für Astronomie und einem internationalen Team gebaute, hochauflösende Kamera NACO ein und verwendeten eine von Close und Lenzen für die Suche nach extrasolaren Planeten entwickelte Zusatzoptik - den "Simultaneous Differential Immager" oder NACO-SDI. Damit werden die Trennschärfe des 8-Meter-Teleskops mit seiner adaptiven Optik und seine Fähigkeit, lichtschwache Begleiter im gleißenden Lichthof des Primärsterns nachzuweisen, noch einmal erhöht: Ein so hoher Kontrast (der Hauptstern ist 120-mal so hell wie sein Begleiter) in einem so geringen Abstand war zuvor noch nie überwunden worden: Der Winkelabstand zwischen dem Stern und seinem schwachen Begleiter beträgt 0.156 Bogensekunden - das entspricht der scheinbaren Größe eines Groschen in 13 Kilometern Entfernung.

War der Begleiter einmal identifiziert, so ließen sich seine Temperatur und seine Leuchtkraft im infraroten Spektralbereich bestimmen. Zur Überraschung der Forscher war der Begleiter 400 Grad kühler und 2.5-mal so lichtschwach wie auf Grund neuester Modellrechnungen erwartet. Aus der genauen Ortsbestimmung des Begleiters und der beobachteten "Wackel"-Amplitude des Primärsterns ergab sich für seine Masse ein sehr genauer Wert von 88 bis 98 Jupiter-Massen: Die Modellrechnungen sagen dagegen für einen Körper dieses Alters und dieser Leuchtkraft einen Wert von nur 50 Jupiter-Massen vorher. Das neue Ergebnis wird also zu einer Neubewertung der Massen kleinster junger Himmelskörper führen.

Objekte wie AB Doradus C sind sehr selten. Nur ein Prozent aller Sterne haben enge massearme Begleiter, und nur ein Prozent der sonnennahen Sterne sind jung. Deshalb ist die Möglichkeit, diese Messung überhaupt durchführen zu können, als großer Glücksfall zu bezeichnen, wie Wolfgang Brandner bemerkte. Die NACO-SDI-Kamera enthält eine adaptive Optik, mit der die durch die Turbulenzen der Erdatmosphäre verursachte Unschärfe beseitigt wird. Die Zusatzoptik SDI zerlegt das Licht eines einzelnen Sterns in vier identische Bilder bei benachbarten Wellenlängen inner- und außerhalb der für massearme Objekte charakteristischen, infraroten Methanbanden. Auf geeigneten Differenzbildern dieser vier Bilder verschwindet der bläuliche Hauptstern mit seinem hellen Lichthof nahezu vollständig, und der massearme, kühle und rötliche Begleiter wird deutlich erkennbar.

Dr. Bernd Wirsing | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de
http://www.mpg.de

Weitere Berichte zu: Close Doradus Himmelskörper Modellrechnung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie