Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schwer ist ein Neutrino?

05.07.2001

Forschungszentrum Karlsruhe vor Großexperiment zur Bestimmung der Neutrino-Masse



Ein bedeutendes Experiment der physikalischen Grundlagenforschung steht am Forschungszentrum Karlsruhe in den Startlöchern: Im Laufe der kommenden fünf Jahre wird hier unter internationaler Beteiligung das Karlsruher Tritium Neutrino-Experiment KATRIN aufgebaut. Ziel des 25 Mio. DM teuren Vorhabens ist die Antwort auf eine der wichtigsten Fragen der modernen Physik: Wie schwer sind Neutrinos, die flüchtigsten aller Elementarteilchen? Sowohl für die Kosmologie als auch für die Hochenergiephysik wäre die Bestimmung der Neutrinomasse von größter Bedeutung.



Spätestens seit Juni dieses Jahres weiß man: Neutrinos haben eine Masse. Dies nämlich ist das Ergebnis einer Gruppe von amerikanischen, kanadischen und britischen Forschern. Sie untersuchten Neutrinos, die von der Sonne kommen und bewiesen dabei, dass sich verschiedene Arten von Neutrinos ineinander umwandeln können (so genannte Neutrino-Oszillationen). Das ist nur dann möglich, wenn die verschiedenen Neutrinosorten nicht alle die gleiche Masse haben.

Wie schwer die Neutrinos nun tatsächlich sind, konnten die Forscher mit ihrem Experiment aber nicht klären. Pionierexperimente der letzten Jahre an der Universität Mainz und am Institut für Nuklearforschung in Troitsk bei Moskau geben für das Elektron-Neutrino Obergrenzen um 2 Elektronenvolt an. (Zum Vergleich: Das Elektron, das leichteste Bauteil eines Atoms, ist mit einer Masse von 511 Elektronenvolt 250 mal schwerer.) Mit dem geplanten Experiment KATRIN kann die Neutrinomasse auch dann noch gemessen werden, wenn sie zehn mal kleiner als die bisherige Obergrenze ist.

KATRIN nutzt den Effekt, aufgrund dessen der Physiker Wolfgang Pauli das Neutrino schon 1931 vorhersagte (die erste direkte Messung gelang erst 1957): Beim Beta-Zerfall in Atomkernen wird ein Neutron in ein Proton und ein Elektron umgewandelt. Das entstehende Elektron hat aber keine feste Energie, sondern kann bis zu einer Obergrenze, die der gesamten freiwerdenden Energie entspricht, beliebige Energien haben. Da beim Beta-Zerfall eines bestimmten Atoms aber immer die gleiche Gesamtenergie frei wird, muss ein weiteres Teilchen den Energieunterschied zwischen der Elektronen- und der Gesamtenergie tragen: das Neutrino. Aus der genauen Beobachtung des Energiespektrums der Elektronen in der Nähe der Gesamtenergie kann nun auf die Neutrinomasse geschlossen werden. Wenn das Neutrino eine Masse hat und damit eine Mindestenergie mit sich trägt, wird das Spektrum gegenüber einer kontinuierlichen Energieverteilung modifiziert sein.

Als Beta-Strahler wird KATRIN Tritium verwenden, eine Form von Wasserstoff, die mit einer Halbwertszeit von 12,3 Jahren zerfällt. Beim Beta-Zerfall von Tritium wird eine Gesamtenergie von 18600 Elektronenvolt frei, die sich auf Elektron und Neutrino verteilt. Die Neutrinos sind nicht nachweisbar. Die Elektronen werden im Herzstück von KATRIN, einem riesigen elektrostatischen Spektrometer, auf ihre Energie untersucht und anschließend in einem Halbleiterdetektor nachgewiesen. Das zentrale Spektrometer wird einen Durchmesser von 7 Metern und eine Länge von 20 Metern haben, die Gesamtlänge des Experiments wird bei 60 Metern liegen.

"Im Forschungszentrum Karlsruhe gibt es ideale Voraussetzungen, um ein solches Großexperiment durchzuführen", erläutert Johannes Blümer, Leiter des Instituts für Kernphysik im Forschungszentrum Karlsruhe und Professor am Institut für Experimentelle Kernphysik der Universität Karlsruhe. "Hier steht mit dem Tritium-Labor ein europaweit einzigartiges Laboratorium für die anspruchsvolle Tritiumhandhabung zur Verfügung. Außerdem gibt es langjährige Erfahrungen mit Hochvakuum und Kryotechnik in großen wissenschaftlichen Apparaturen und darüber hinaus das Know-how und die Infrastruktur für den Bau und Betrieb solcher Anlagen."
Aus diesem Grund hat sich eine internationale Kollaboration, an der neben Hochschulen in Karlsruhe, Mainz und Fulda auch Forschungseinrichtungen in Tschechien (Prag), USA (Seattle) und Russland (Troitsk) beteiligt sind, für das Forschungszentrum Karlsruhe als Standort des Experiments entschieden. Weitere internationale Forschungsinstitute haben schon ihr Interesse an einer Zusammenarbeit bekundet.

Inge Arnold | idw

Weitere Berichte zu: Beta-Zerfall Elektronenvolt KATRIN Neutrino Neutrinomasse Tritium

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Nanotechnologie für Energie-Materialien: Elektroden wie Blattadern
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultradünne Membranen aus Graphen
27.09.2016 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: Quantenboost für künstliche Intelligenz

Intelligente Maschinen, die selbständig lernen, gelten als Zukunftstrend. Forscher der Universität Innsbruck und des Joint Quantum Institute in Maryland, USA, loten nun in der Fachzeitschrift Physical Review Letters aus, wie Quantentechnologien dabei helfen können, die Methoden des maschinellen Lernens weiter zu verbessern.

In selbstfahrenden Autos, IBM's Watson oder Google's AlphaGo sind Computerprogramme am Werk, die aus Erfahrungen lernen können. Solche Maschinen werden im Zuge...

Im Focus: Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit Kollegen der Freien Universität Berlin ein neues Molekül entdeckt: Die Eisenverbindung in der seltenen Oxidationsstufe +4 gehört zu den Ferrocenen und ist äußerst schwierig zu synthetisieren.

Metallocene werden umgangssprachlich auch als Sandwichverbindungen bezeichnet. Sie bestehen aus zwei organischen ringförmigen Verbindungen, den...

Im Focus: Neue Entwicklungen in der Asphären-Messtechnik

Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung (CC UPOB) lädt zum Expertentreffen im März 2017 ein

Ob in Weltraumteleskopen, deren Optiken trotz großer Abmessungen nanometergenau gefertigt sein müssen, in Handykameras oder in Endoskopen − Asphären kommen in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Laser für Neurochirurgie und Biofabrikation - LaserForum 2016 thematisiert Medizintechnik

27.09.2016 | Veranstaltungen

Ist Vergessen die Zukunft?

27.09.2016 | Veranstaltungen

Von der Probe zum digitalen Modell - MikroskopieTrends ´16

26.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanotechnologie für Energie-Materialien: Elektroden wie Blattadern

27.09.2016 | Physik Astronomie

Ultradünne Membranen aus Graphen

27.09.2016 | Physik Astronomie

Ein magnetischer Antrieb für Mikroroboter

27.09.2016 | Biowissenschaften Chemie