Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schwer ist ein Neutrino?

05.07.2001

Forschungszentrum Karlsruhe vor Großexperiment zur Bestimmung der Neutrino-Masse



Ein bedeutendes Experiment der physikalischen Grundlagenforschung steht am Forschungszentrum Karlsruhe in den Startlöchern: Im Laufe der kommenden fünf Jahre wird hier unter internationaler Beteiligung das Karlsruher Tritium Neutrino-Experiment KATRIN aufgebaut. Ziel des 25 Mio. DM teuren Vorhabens ist die Antwort auf eine der wichtigsten Fragen der modernen Physik: Wie schwer sind Neutrinos, die flüchtigsten aller Elementarteilchen? Sowohl für die Kosmologie als auch für die Hochenergiephysik wäre die Bestimmung der Neutrinomasse von größter Bedeutung.



Spätestens seit Juni dieses Jahres weiß man: Neutrinos haben eine Masse. Dies nämlich ist das Ergebnis einer Gruppe von amerikanischen, kanadischen und britischen Forschern. Sie untersuchten Neutrinos, die von der Sonne kommen und bewiesen dabei, dass sich verschiedene Arten von Neutrinos ineinander umwandeln können (so genannte Neutrino-Oszillationen). Das ist nur dann möglich, wenn die verschiedenen Neutrinosorten nicht alle die gleiche Masse haben.

Wie schwer die Neutrinos nun tatsächlich sind, konnten die Forscher mit ihrem Experiment aber nicht klären. Pionierexperimente der letzten Jahre an der Universität Mainz und am Institut für Nuklearforschung in Troitsk bei Moskau geben für das Elektron-Neutrino Obergrenzen um 2 Elektronenvolt an. (Zum Vergleich: Das Elektron, das leichteste Bauteil eines Atoms, ist mit einer Masse von 511 Elektronenvolt 250 mal schwerer.) Mit dem geplanten Experiment KATRIN kann die Neutrinomasse auch dann noch gemessen werden, wenn sie zehn mal kleiner als die bisherige Obergrenze ist.

KATRIN nutzt den Effekt, aufgrund dessen der Physiker Wolfgang Pauli das Neutrino schon 1931 vorhersagte (die erste direkte Messung gelang erst 1957): Beim Beta-Zerfall in Atomkernen wird ein Neutron in ein Proton und ein Elektron umgewandelt. Das entstehende Elektron hat aber keine feste Energie, sondern kann bis zu einer Obergrenze, die der gesamten freiwerdenden Energie entspricht, beliebige Energien haben. Da beim Beta-Zerfall eines bestimmten Atoms aber immer die gleiche Gesamtenergie frei wird, muss ein weiteres Teilchen den Energieunterschied zwischen der Elektronen- und der Gesamtenergie tragen: das Neutrino. Aus der genauen Beobachtung des Energiespektrums der Elektronen in der Nähe der Gesamtenergie kann nun auf die Neutrinomasse geschlossen werden. Wenn das Neutrino eine Masse hat und damit eine Mindestenergie mit sich trägt, wird das Spektrum gegenüber einer kontinuierlichen Energieverteilung modifiziert sein.

Als Beta-Strahler wird KATRIN Tritium verwenden, eine Form von Wasserstoff, die mit einer Halbwertszeit von 12,3 Jahren zerfällt. Beim Beta-Zerfall von Tritium wird eine Gesamtenergie von 18600 Elektronenvolt frei, die sich auf Elektron und Neutrino verteilt. Die Neutrinos sind nicht nachweisbar. Die Elektronen werden im Herzstück von KATRIN, einem riesigen elektrostatischen Spektrometer, auf ihre Energie untersucht und anschließend in einem Halbleiterdetektor nachgewiesen. Das zentrale Spektrometer wird einen Durchmesser von 7 Metern und eine Länge von 20 Metern haben, die Gesamtlänge des Experiments wird bei 60 Metern liegen.

"Im Forschungszentrum Karlsruhe gibt es ideale Voraussetzungen, um ein solches Großexperiment durchzuführen", erläutert Johannes Blümer, Leiter des Instituts für Kernphysik im Forschungszentrum Karlsruhe und Professor am Institut für Experimentelle Kernphysik der Universität Karlsruhe. "Hier steht mit dem Tritium-Labor ein europaweit einzigartiges Laboratorium für die anspruchsvolle Tritiumhandhabung zur Verfügung. Außerdem gibt es langjährige Erfahrungen mit Hochvakuum und Kryotechnik in großen wissenschaftlichen Apparaturen und darüber hinaus das Know-how und die Infrastruktur für den Bau und Betrieb solcher Anlagen."
Aus diesem Grund hat sich eine internationale Kollaboration, an der neben Hochschulen in Karlsruhe, Mainz und Fulda auch Forschungseinrichtungen in Tschechien (Prag), USA (Seattle) und Russland (Troitsk) beteiligt sind, für das Forschungszentrum Karlsruhe als Standort des Experiments entschieden. Weitere internationale Forschungsinstitute haben schon ihr Interesse an einer Zusammenarbeit bekundet.

Inge Arnold | idw

Weitere Berichte zu: Beta-Zerfall Elektronenvolt KATRIN Neutrino Neutrinomasse Tritium

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen