Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschernachwuchsgruppe: Die Bewegungen der Sterne und die Masse der Galaxien

13.01.2005


Die Aufnahme zeigt den mehrere Milliarden Lichtjahre entfernten Galaxienhaufen MS 1008-12.


Die Aufnahme zeigt die Signatur der Rotation im Spektrum einer weit entfernten Spiralgalaxie.


Die kinematische Entwicklung ferner Galaxien untersuchen Nachwuchswissenschaftler an der Sternwarte der Universität Göttingen: Die Forscher vergleichen dabei ihre spektroskopischen Bewegungsmessungen, aus denen unter anderem die Gesamtmasse der Galaxien bestimmt werden kann, mit dem optischen Erscheinungsbild eines Sternsystems. Dazu wird das mit Teleskopen "eingefangene" Sternenlicht in seine Bestandteile zerlegt. Ein solches Spektrum erlaubt unter anderem Einblicke in die Dynamik und Entstehungsgeschichte von Himmelskörpern oder gibt Auskunft über die Häufigkeit dort vorkommender chemischer Elemente. Nach der erfolgreichen Evaluation durch eine internationale Gutachterkommission wird die VolkswagenStiftung (Hannover) ihre Förderung für diese seit 2001 bestehende Forschernachwuchsgruppe auf dem Gebiet der Astrophysik bis Ende 2006 fortsetzen. Damit erreicht das Göttinger Team unter der Leitung von Dr. Bodo Ziegler die maximale Förderdauer von sechs Jahren mit einem Fördervolumen von insgesamt 1,2 Millionen Euro.


Vor rund 80 Jahren fanden Wissenschaftler erste Hinweise dafür, dass das Universum vor 14 Milliarden Jahren aus einem Urknall entstanden ist und sich seitdem ausdehnt. Inzwischen besteht aufgrund zahlreicher Messungen kein Zweifel daran, dass das Weltall einen zeitlichen Anfang hatte und die heute bekannten Strukturen das Ergebnis einer komplexen Entwicklung sind. "Unsere Forschungen basieren darauf, dass die Untersuchungen von Galaxien in unterschiedlichen Entfernungen einem Blick in verschiedene Epochen ihrer Entwicklung entsprechen", erläutert Dr. Ziegler. "Eine Galaxie in 100 Millionen Lichtjahren Entfernung erscheint uns in dem Zustand, den sie vor 100 Millionen Jahren hatte, denn so lange war das Licht unterwegs, bis es uns erreicht hat. Unsere Beobachtungen betreffen sogar einen Bereich, der das halbe Weltalter, also rund sieben Milliarden Jahre, umfasst", so der Astrophysiker. Je nach Umgebungsdichte sind die Sternsysteme im Laufe der Jahrmilliarden verschiedenen, teils spektakulären Wechselwirkungen ausgesetzt. Dr. Ziegler: "Galaxien können sich gravitativ gegenseitig stören oder gar verschmelzen und dadurch zum Beispiel eine bedeutende Steigerung ihrer Sternentstehungsrate und damit ihrer Helligkeit erfahren."

Die Göttinger Wissenschaftler beschäftigen sich mit zwei Haupttypen von Galaxien im Universum. Dazu gehören gasreiche Scheibengalaxien mit Spiralarmen und aktiver Sternentstehung, zu denen auch die Milchstraße zählt, sowie gasarme Elliptische Galaxien mit vorwiegend alten Sternen. "Anhand ihrer Eigenschaften in unterschiedlichen kosmischen Epochen lassen sich fundamentale Modelle zur Strukturentstehung und -entwicklung testen", sagt Dr. Asmus Böhm, der sich in der Forschernachwuchsgruppe inbesondere mit den Spiralgalaxien befasst. Im Gegensatz zu früheren Untersuchungen, bei denen "nur" das Sternenlicht der Galaxien erforscht wurde, schließen die kinematischen Messungen der Göttinger Wissenschaftler auch jenen Teil der Materie mit ein, der unsichtbar ist.


Die Natur dieser geheimnisvollen "Dunklen Materie" ist bislang noch unbekannt, sie hat aber einen weit größeren Anteil an der Gesamtmasse einer Galaxie und am Materieinhalt des Universums insgesamt als die leuchtende Materie. "Wenn wir die Geschwindigkeit, mit der sich Sterne und Gas um das Zentrum einer Galaxie bewegen, als Funktion des Abstandes vom Mittelpunkt auftragen, so verläuft diese so genannte Rotationskurve anders als dies die Verteilung der sichtbaren Materie erwarten lässt. Dies lässt darauf schließen, dass Spiralgalaxien von einem Halo, einem Ring dunkler Materie umhüllt sind", sagt Dr. Klaus Jäger, der in der Gruppe für die Analyse von Spiralen in Galaxienhaufen zuständig ist. "Wenn Sternsysteme von außen in einen Galaxienhaufen hineinfallen, verlieren sie durch den Einfluss der Gravitation ihrer zahlreichen Nachbarn möglicherweise einen Teil ihres dunklen Halos und zeigen dramatische Veränderungen ihrer internen Bewegung."

Die Messungen, mit denen die Wissenschaftler der Georg-August-Universität den kinematischen Signaturen auf die Spur kommen, werden mit den größten Teleskopen der Welt durchgeführt; sie bewegen sich am Limit des derzeit technisch Machbaren, erläutert Alexander Fritz aus Wien (Österreich), der in der Göttinger Forschernachwuchsgruppe an seiner Dissertation arbeitet. Das Team profitiert dabei von der Beteiligung der Universitäts-Sternwarte am Very Large Telescope der Europäischen Südsternwarte (ESO) in Chile, dem Hobby-Eberly Teleskop in den USA und dessen 2005 in Betrieb gehenden Zwilling SALT in Südafrika. Ein besonderer Erfolg war das Einwerben von Beobachtungszeit am Weltraumteleskop Hubble. Mit den hochauflösenden Aufnahmen des außerhalb der Atmosphäre kreisenden Observatoriums sind die Forscher in der Lage, die aus den kinematischen Messungen abgeleiteten Störungen der Galaxien im Detail mit ihrem optischen Erscheinungsbild zu vergleichen.

Einen wichtigen Aspekt der Forschungsarbeiten bildet die intensive Kooperation mit Wissenschaftlern aus dem In- und Ausland. Dies spiegelt sich auch in der Zusammensetzung der Forschernachwuchsgruppe wider. Seit Beginn des vergangenen Jahres ist mit Miguel Verdugo aus Chile ein weiterer Doktorand Mitglied im Team. Im Dezember 2004 hat außerdem Dr. Christiano da Rocha aus Sao Paulo (Brasilien) seinen einjährigen Forschungsaufenthalt als Gastwissenschaftler in der Gruppe begonnen. Informationen im Internet können unter der Adresse www.uni-sw.gwdg.de/~vwgroup
abgerufen werden.

Kontaktadresse:

Dr. Bodo Ziegler, Dr. Klaus Jäger
Georg-August-Universität Göttingen
Fakultät für Physik - Universitäts-Sternwarte
Geismarlandstraße 11, 37083 Göttingen
Telefon (0551) 39-5067, Fax (0551) 39-5043
e-mail: bziegler@astro.physik.uni-goettingen.de
e-mail: jaeger@astro.physik-uni-goettingen.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-sw.gwdg.de
http://www.uni-sw.gwdg.de/~vwgroup

Weitere Berichte zu: Forschernachwuchsgruppe Galaxie Materie Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops