Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Entdeckung von Magnetfeldern in Zentralsternen Planetarischer Nebel

04.01.2005


Einem Team von Astronomen der Universitäten Heidelberg (Stefan Jordan), Tübingen (Klaus Werner) und Erlangen-Nürnberg (Simon O’Toole) ist es erstmals gelungen, Magnetfelder in Zentralsternen Planetarischer Nebel nachzuweisen. Planetarische Nebel sind expandierende Gashüllen, die sonnenähnliche Sterne am Ende ihres Lebens abgestoßen haben. Es ist immer noch ein Rätsel, warum die meisten dieser ästhetisch aussehenden Nebel nicht einfach kugelförmig sind. Schon lange wurde spekuliert, dass Magnetfelder einen entscheidenden Einfluss auf die Formgebung haben. Das Team hat nun erstmals einen direkten Hinweis darauf gefunden, dass Magnetfelder tatsächlich die Formen dieser bemerkenswerten Gebilde ausprägen können.



Planetarische Nebel werden von sonnenähnlichen Sternen erzeugt, die am Ende ihres Lebens zu roten Riesensternen geworden sind. In dieser Phase haben die Sterne ihren Durchmesser etwa 100-fach vergrößert und ihre äußere Gashülle abgestoßen. Das Gas bewegt sich immer weiter von dem Zentralstern fort. Man glaubt, dass ein Planetarischer Nebel entsteht, wenn ein schneller Materiewind vom Zentralstern die in früheren Phasen abgestoßene, langsam expandierende Gashülle wie ein Schneepflug zusammenschiebt. Die Atome in der so entstandenen Nebelschale werden durch den Zentralstern zum Leuchten angeregt und lassen so den Nebel sichtbar werden. Die beobachteten Formen können sehr eigenartig sein. Meist sind sie elliptisch oder bipolar und nicht, wie man erwarten könnte, einfach kugelförmig.

... mehr zu:
»Gashülle »Magnetfeld »Zentralstern


Drei Möglichkeiten wurden bisher diskutiert, um das Aussehen der nicht-kugelförmigen Nebel zu erklären. Erstens könnte der Zentralstern so schnell rotieren, dass durch die Zentrifugalkräfte die Gashülle vorwiegend am Äquator abgestoßen wird. Ein anderer Grund könnten Gravitationskräfte sein, die durch einen engen Begleitstern ausgeübt werden. Die dritte und am häufigsten diskutierte Möglichkeit ist der Einfluss eines Magnetfeldes, das seinen Ursprung im Stern hat.

Magnetfelder können durch den Dynamoeffekt in Sternen erzeugt werden. Voraussetzung dafür ist, dass der Stern nicht wie ein starrer Körper rotiert, sondern mit unterschiedlicher Geschwindigkeit in unterschiedlichen Tiefen, so wie es bei unserer Sonne der Fall ist. Das Magnetfeld eines Roten Riesen, der einen Planetarischen Nebel abstößt, kann so entstehen bzw. auch schon lange Zeit vorher, in der Jugendphase des Sterns, entstanden sein. Solche "fossilen" Magnetfelder können Jahrmilliarden überleben, da das Sternplasma eine extrem hohe elektrische Leitfähigkeit hat.

Der expandierende Gasnebel kann das Magnetfeld des Sterns erkennbar werden lassen, so wie es Eisenfeilspäne bei einem Hufeisenmagneten tun. Das Gas kann den Stern am einfachsten an den beiden magnetischen Polen verlassen und man kann, wenn die Feldstärke hoch genug ist, auf diese Weise die bipolare Struktur vieler Nebel erklären. Eine schöne Theorie, aber bisher konnten keine Magnetfelder auf Zentralsternen gefunden werden. Einen ersten Hinweis gab es 2002 durch Beobachtungen mit Radioteleskopen von Gas in der Umgebung Roter Riesen, aber der direkte Nachweis von Magnetfeldern, die ihren Ursprung im Stern haben, stand bis heute aus.

Durch Beobachtungen an einem 8m-Teleskop des "Very Large Telescope" der Europäischen Südsternwarte (ESO, Chile) gelang nun bei vier Zentralsternen der Nachweis, dass deren Licht zu 0.1% polarisiert ist. Damit kann man auf eine Magnetfeldstärke von etwa 1000 Gauß schließen - im Vergleich dazu hat das Erdmagnetfeld eine Stärke von nur rund 1 Gauß. Diese hohe Feldstärke reicht aus, die bipolare Struktur von planetarischen Nebeln zu erklären.

Die wissenschaftliche Arbeit ist in der Fachzeitschrift "Astronomy & Astrophysics" (A&A) erschienen. Link zur Originalarbeit und Pressemitteilung von A&A: http://www.edpsciences.org/journal/index.cfm?edpsname=aa&niv1=others&niv2=press_release

Kontakt-Adressen

Prof. Klaus Werner, Universität Tübingen
Tel.: (07071) 2978601
E-Mail: werner@astro.uni-tuebingen.de

Dr. Stefan Jordan, Universität Heidelberg
Tel.: (06221) 405242
E-Mail: jordan@ari.uni-heidelberg.de

Dr. Simon O’Toole, Universität Erlangen-Nürnberg
Tel.: (0951) 9522217
E-Mail: otoole@sternwarte.uni-erlangen.de

Hintergrund

Polarisation ist eine Eigenschaft des Lichtes. Licht ist eine elektromagnetische Welle, bei der die Schwingungen des elektrischen Feldvektors in einer Ebene beliebiger Orientierung ablaufen. Licht ist normalerweise unpolarisiert, die Schwingungen des Lichts haben keine Vorzugsrichtung. Licht wird polarisiert z.B. durch Reflektion an einer glatten Ebene. Fotografen gelingt es daher durch Polarisationsfilter, solche Reflexionen im Bild zu unterdrücken. Ein Sternmagnetfeld erzwingt die Emission von polarisiertem Licht von strahlenden Atomen in der Sternatmosphäre. Die Untersuchung der polarisierten Strahlung lässt Rückschlüsse auf Stärke und Form des Magnetfeldes zu. Magnetfelder spielen für viele astrophysikalische Objekte eine entscheidende Rolle bei deren Bildung und Entwicklung.

Der Nachweis von Magnetfeldern in den Sternen gelingt über eine im Prinzip seit langem bekannte Methode. Das Licht, das von Atomen in einem Magnetfeld ausgesandt wird, ist polarisiert. Dieser von dem Holländer Pieter Zeeman 1896 entdeckte Effekt wurde 1908 von dem Amerikaner George Hale erstmals ausgenutzt, um das Magnetfeld der Sonne nachzuweisen. Bei Sternen ist der Nachweis ungleich schwieriger. Die Beobachtungen müssen von extrem guter Qualität sein, weil der Polarisationseffekt nur sehr schwach ist. Man braucht dazu die modernsten und größten Teleskope.

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/
http://www.uni-tuebingen.de/uni/qvo/pm/pm2005/pm-05-01.html
http://www.edpsciences.org/journal/index.cfm?edpsname=aa&niv1=others&niv2=press_release

Weitere Berichte zu: Gashülle Magnetfeld Zentralstern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics