Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herkunft des Sternenstaubs im frühen Universum bleibt rätselhaft

17.12.2004


Der Supernova-Überrest Cassiopeia A, aufgenommen mit dem Weltraum- Observatorium SPITZER bei einer Wellenlänge von 24 Mikrometern. Dieses Infrarotbild zeigt die Emission des von der Supernova erzeugten warmen Staubes, der eine Gesamtmasse von nur 0,002 Sonnenmassen aufweist.
Bild: Max-Planck-Institut für Astronomie


Die Umgebung von Cas A, gesehen in der ISOPHOT-Zufallsdurchmusterung bei einer Wellenlänge von 170 Mikrometern. Bei dieser Wellenlänge im fernen Infraroten ist die Emission sehr kalten Staubes zu erkennen. Cas A (im Zentrum) ist offensichtlich überdeckt von einer ausgedehnten Staubwolke im Vordergrund. Die Konturen innerhalb des schwarzen Rechtecks zeigen Messungen von SPITZER bei 160 Mikrometer, die mit den ISO-Messungen exzellent übereinstimmen.
Bild: Max-Planck-Institut für Astronomie


Frühe Supernovae sind offenbar nicht Quelle des ersten Staubs im Kosmos, wie Infrarot-Beobachtungen eines deutsch-amerikanischen Astronomenteams zeigen


Manche Astronomen glaubten seit vergangenem Jahr zu wissen, wie die großen Mengen Staub entstanden sind, welche die frühesten Quasare umgeben: Sie sollten sich bei den Supernova-Explosionen der ersten Sterngenerationen nach dem Urknall gebildet haben. Das wurde aus Beobachtungen des angeblich "stark rauchenden" Supernova-Überrests Cassiopeia A geschlossen. Nun zeigen neue, von Wissenschaftlern des Max-Planck-Instituts für Astronomie, der University of Arizona sowie des Space Science Institute in Boulder (beide USA) mit den Infrarot-Satelliten ISO und SPITZER gewonnene Beobachtungen, dass dieser wichtige Befund nicht zu halten ist. Der Staub gehört vielmehr zu einer interstellaren Wolke, die weiter im Vordergrund steht und Cassiopeia A überdeckt (Nature, 8. Dezember 2004).

Die Frage nach dem Ursprung des ersten Staubkörner im Kosmos hat grundlegende Bedeutung. Bekanntlich gab es am Anfang unseres Universums nur Wasserstoff, also ein Gas aus den einfachsten Atomen. Schwerere Elemente wie Kohlenstoff, Sauerstoff, Silizium usw. bis hin zum Eisen wurden erst im Inneren der Sterne der ersten Generation synthetisiert. Alle noch schwereren Elemente entstanden sogar erst bei Supernova-Explosionen.


Die schwereren Elemente stehen also erst für den Aufbau der Sterne späterer Generationen zur Verfügung. Staubkörner, die ersten Festkörper im Kosmos, bestehen aus diesen schwereren Elementen und bilden sich in den kühlen Winden aus, die von mehrere Milliarden Jahre alten, sonnenähnlichen Sternen ausgehen - oder aber auch, bereits nach wenigen Millionen Jahren - in Supernova-Explosionen. Erst dann steht der Staub zur Verfügung für den Aufbau von Sternen späterer Generationen und - aus menschlicher Sicht besonders wichtig - ihrer eventuellen Planetensystemen.

In den letzten Jahren haben Astronomen in der Umgebung der fernsten Quasare, die wir im jungen Universum, nur etwa 700 Millionen Jahre nach dem Urknall, beobachten, große Mengen interstellaren Staub entdeckt. Damit stellte sich das Problem: Wie konnte all dieser Staub so schnell entstehen? Offenbar kommen dafür nur die Supernova-Explosionen in Frage, da das Universum damals zur Ausbildung kühler Winde alter sonnenähnlicher Sterne noch viel zu jung war. Aber waren die Supernovae tatsächlich so ergiebig?

Eine erste Antwort auf diese Frage gab ein 2003 erschienene, viel zitierte wissenschaftliche Arbeit [1]: Zwar galten bisher Supernova-Überreste als staubarm, da sich in ihnen im kurzwelligen Infrarotbereich nur wenig warmer Staub nachweisen ließ. Die Autoren beobachteten aber in Richtung auf den Supernova-Überrest Cassiopeia A (kurz: Cas A) starke thermische Emission im Submillimeterbereich, wie sie für große Mengen kalten interstellaren Staubes charakteristisch ist. Sie ordneten diesen Staub der Umgebung von Cas A zu und glaubten, damit auch eine Erklärung für das Rätsel der großen Staubmengen im frühen Universum gefunden zu haben: Anscheinend produzierten Supernovae vom Typ II (zu denen die Supernova in Cas A gehört) tatsächlich genügend viel Staub. Eine Supernova-Explosion vom Typ II ereignet sich, wenn der Kernbereich eines extrem kurzlebigen, massereichen Sterns am Ende seiner Entwicklung in sich zusammenstürzt und dabei große Mengen an Gravitationsenergie freisetzt, die den größten Teil des Sterns explosionsartig auseinander fliegen lässt.

Doch der Supernova-Überrest Cassiopeia A wurde auch vom Infrarotsatelliten ISO im Rahmen einer Himmelsdurchmusterung im fernen Infraroten - der so genannten ISO- Zufallsdurchmusterung bei einer Wellenlänge von 170 Mikrometern beobachtet. Bei dieser Wellenlänge emittiert sehr kalter Staub (T » 10 … 20 Kelvin oder -250 … -260 °C) seine "Wärmestrahlung". Auf diese Weise haben die Wissenschaftler des Max-Planck-Instituts für Astronomie in Heidelberg gemeinsam mit ihren amerikanischen Kollegen eine kalte interstellare Wolke entdeckt, die Cas A überdeckt. Sie vermuten daher, die 2003 gemessene Submillimeter-Strahlung könnte eigentlich nur von dieser Wolke stammen, die zwar in Richtung des Supernova-Überrests, aber weit im Vordergrund steht und nicht mit der Supernova assoziiert ist. Diese Vermutung haben die Astronomen noch durch Beobachtungen mit dem weltraumgestützten Infrarotteleskop SPITZER erhärtet und inzwischen in der Zeitschrift Nature veröffentlicht [2].

Cas A ist der jüngste bekannte Supernova-Überrest in unserer Milchstraße. Er steht etwa 11.000 Lichtjahre entfernt, jenseits des staubreichen Perseus-Spiralarms. Die Forscher vermuten, dass eben diese im Vordergrund gelegenen Staubwolken verhindert haben, dass die Astronomen des späten 17. Jahrhunderts die Supernova-Explosion beobachten konnten, deren Überrest Cas A heute ist. Cas A steht der Erde so nahe, dass die Supernova für einige Zeit als der hellste Stern am ganzen Himmel hätte erscheinen müssen, doch die Staubwolke im Perseus-Arm hat sie verdeckt.

Das deutsch-amerikanische Team kartierte Cas A bei 160 Mikrometern Wellenlänge unter Einsatz des Weltraumteleskops SPITZER und seines abbildenden Photometers und verglich diese Ergebnisse mit einer im Radiobereich erstellten Karte derselben Himmelsregion. Aus diesem Vergleich ergibt sich, dass der Staub in den interstellaren Wolken praktisch für die gesamte Infrarotstrahlung verantwortlich ist. Damit kann man keine wesentlichen Mengen Staub mit dem Supernova-Überrest Cas A assoziieren.

Daher müssen sich die Astronomen erneut auf die Suche machen, um die ersten Staubquellen im Kosmos zu identifizieren. Gelingt das, so werden wir wissen, wie und wo die aller ersten Sterne entstanden sind, oder ob es außer den stellaren noch andere, bisher unbekannte Mechanismen gibt, Sternenstaub zu erzeugen. Die Antwort wird unser Verständnis der frühesten Entwicklung der Galaxien wesentlich vertiefen.

Originalveröffentlichung:

Loretta Dunne, Stephen Eales, Rob Ivison, Haley Morgan, Mike Edmunds
Type II supernovae as a significant source of interstellar dust
Nature, 424, pp. 285-287 (2003)

Oliver Krause, Stephan M. Birkmann, George H. Rieke, Dietrich Lemke, Ulrich Klaas, Dean C. Hines, Karl D. Gordon
No cold dust within the supernova remnant Cassiopeia A
Nature, 432, pp. 596-598, 8. Dezember 2004

Weitere Informationen erhalten Sie von:

Prof. Dietrich Lemke
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-259
E-Mail: lemke@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-229
E-Mail: staude@mpia.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpia.de

Weitere Berichte zu: Cassiopeia Supernova-Explosion Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau