Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herkunft des Sternenstaubs im frühen Universum bleibt rätselhaft

17.12.2004


Der Supernova-Überrest Cassiopeia A, aufgenommen mit dem Weltraum- Observatorium SPITZER bei einer Wellenlänge von 24 Mikrometern. Dieses Infrarotbild zeigt die Emission des von der Supernova erzeugten warmen Staubes, der eine Gesamtmasse von nur 0,002 Sonnenmassen aufweist.
Bild: Max-Planck-Institut für Astronomie


Die Umgebung von Cas A, gesehen in der ISOPHOT-Zufallsdurchmusterung bei einer Wellenlänge von 170 Mikrometern. Bei dieser Wellenlänge im fernen Infraroten ist die Emission sehr kalten Staubes zu erkennen. Cas A (im Zentrum) ist offensichtlich überdeckt von einer ausgedehnten Staubwolke im Vordergrund. Die Konturen innerhalb des schwarzen Rechtecks zeigen Messungen von SPITZER bei 160 Mikrometer, die mit den ISO-Messungen exzellent übereinstimmen.
Bild: Max-Planck-Institut für Astronomie


Frühe Supernovae sind offenbar nicht Quelle des ersten Staubs im Kosmos, wie Infrarot-Beobachtungen eines deutsch-amerikanischen Astronomenteams zeigen


Manche Astronomen glaubten seit vergangenem Jahr zu wissen, wie die großen Mengen Staub entstanden sind, welche die frühesten Quasare umgeben: Sie sollten sich bei den Supernova-Explosionen der ersten Sterngenerationen nach dem Urknall gebildet haben. Das wurde aus Beobachtungen des angeblich "stark rauchenden" Supernova-Überrests Cassiopeia A geschlossen. Nun zeigen neue, von Wissenschaftlern des Max-Planck-Instituts für Astronomie, der University of Arizona sowie des Space Science Institute in Boulder (beide USA) mit den Infrarot-Satelliten ISO und SPITZER gewonnene Beobachtungen, dass dieser wichtige Befund nicht zu halten ist. Der Staub gehört vielmehr zu einer interstellaren Wolke, die weiter im Vordergrund steht und Cassiopeia A überdeckt (Nature, 8. Dezember 2004).

Die Frage nach dem Ursprung des ersten Staubkörner im Kosmos hat grundlegende Bedeutung. Bekanntlich gab es am Anfang unseres Universums nur Wasserstoff, also ein Gas aus den einfachsten Atomen. Schwerere Elemente wie Kohlenstoff, Sauerstoff, Silizium usw. bis hin zum Eisen wurden erst im Inneren der Sterne der ersten Generation synthetisiert. Alle noch schwereren Elemente entstanden sogar erst bei Supernova-Explosionen.


Die schwereren Elemente stehen also erst für den Aufbau der Sterne späterer Generationen zur Verfügung. Staubkörner, die ersten Festkörper im Kosmos, bestehen aus diesen schwereren Elementen und bilden sich in den kühlen Winden aus, die von mehrere Milliarden Jahre alten, sonnenähnlichen Sternen ausgehen - oder aber auch, bereits nach wenigen Millionen Jahren - in Supernova-Explosionen. Erst dann steht der Staub zur Verfügung für den Aufbau von Sternen späterer Generationen und - aus menschlicher Sicht besonders wichtig - ihrer eventuellen Planetensystemen.

In den letzten Jahren haben Astronomen in der Umgebung der fernsten Quasare, die wir im jungen Universum, nur etwa 700 Millionen Jahre nach dem Urknall, beobachten, große Mengen interstellaren Staub entdeckt. Damit stellte sich das Problem: Wie konnte all dieser Staub so schnell entstehen? Offenbar kommen dafür nur die Supernova-Explosionen in Frage, da das Universum damals zur Ausbildung kühler Winde alter sonnenähnlicher Sterne noch viel zu jung war. Aber waren die Supernovae tatsächlich so ergiebig?

Eine erste Antwort auf diese Frage gab ein 2003 erschienene, viel zitierte wissenschaftliche Arbeit [1]: Zwar galten bisher Supernova-Überreste als staubarm, da sich in ihnen im kurzwelligen Infrarotbereich nur wenig warmer Staub nachweisen ließ. Die Autoren beobachteten aber in Richtung auf den Supernova-Überrest Cassiopeia A (kurz: Cas A) starke thermische Emission im Submillimeterbereich, wie sie für große Mengen kalten interstellaren Staubes charakteristisch ist. Sie ordneten diesen Staub der Umgebung von Cas A zu und glaubten, damit auch eine Erklärung für das Rätsel der großen Staubmengen im frühen Universum gefunden zu haben: Anscheinend produzierten Supernovae vom Typ II (zu denen die Supernova in Cas A gehört) tatsächlich genügend viel Staub. Eine Supernova-Explosion vom Typ II ereignet sich, wenn der Kernbereich eines extrem kurzlebigen, massereichen Sterns am Ende seiner Entwicklung in sich zusammenstürzt und dabei große Mengen an Gravitationsenergie freisetzt, die den größten Teil des Sterns explosionsartig auseinander fliegen lässt.

Doch der Supernova-Überrest Cassiopeia A wurde auch vom Infrarotsatelliten ISO im Rahmen einer Himmelsdurchmusterung im fernen Infraroten - der so genannten ISO- Zufallsdurchmusterung bei einer Wellenlänge von 170 Mikrometern beobachtet. Bei dieser Wellenlänge emittiert sehr kalter Staub (T » 10 … 20 Kelvin oder -250 … -260 °C) seine "Wärmestrahlung". Auf diese Weise haben die Wissenschaftler des Max-Planck-Instituts für Astronomie in Heidelberg gemeinsam mit ihren amerikanischen Kollegen eine kalte interstellare Wolke entdeckt, die Cas A überdeckt. Sie vermuten daher, die 2003 gemessene Submillimeter-Strahlung könnte eigentlich nur von dieser Wolke stammen, die zwar in Richtung des Supernova-Überrests, aber weit im Vordergrund steht und nicht mit der Supernova assoziiert ist. Diese Vermutung haben die Astronomen noch durch Beobachtungen mit dem weltraumgestützten Infrarotteleskop SPITZER erhärtet und inzwischen in der Zeitschrift Nature veröffentlicht [2].

Cas A ist der jüngste bekannte Supernova-Überrest in unserer Milchstraße. Er steht etwa 11.000 Lichtjahre entfernt, jenseits des staubreichen Perseus-Spiralarms. Die Forscher vermuten, dass eben diese im Vordergrund gelegenen Staubwolken verhindert haben, dass die Astronomen des späten 17. Jahrhunderts die Supernova-Explosion beobachten konnten, deren Überrest Cas A heute ist. Cas A steht der Erde so nahe, dass die Supernova für einige Zeit als der hellste Stern am ganzen Himmel hätte erscheinen müssen, doch die Staubwolke im Perseus-Arm hat sie verdeckt.

Das deutsch-amerikanische Team kartierte Cas A bei 160 Mikrometern Wellenlänge unter Einsatz des Weltraumteleskops SPITZER und seines abbildenden Photometers und verglich diese Ergebnisse mit einer im Radiobereich erstellten Karte derselben Himmelsregion. Aus diesem Vergleich ergibt sich, dass der Staub in den interstellaren Wolken praktisch für die gesamte Infrarotstrahlung verantwortlich ist. Damit kann man keine wesentlichen Mengen Staub mit dem Supernova-Überrest Cas A assoziieren.

Daher müssen sich die Astronomen erneut auf die Suche machen, um die ersten Staubquellen im Kosmos zu identifizieren. Gelingt das, so werden wir wissen, wie und wo die aller ersten Sterne entstanden sind, oder ob es außer den stellaren noch andere, bisher unbekannte Mechanismen gibt, Sternenstaub zu erzeugen. Die Antwort wird unser Verständnis der frühesten Entwicklung der Galaxien wesentlich vertiefen.

Originalveröffentlichung:

Loretta Dunne, Stephen Eales, Rob Ivison, Haley Morgan, Mike Edmunds
Type II supernovae as a significant source of interstellar dust
Nature, 424, pp. 285-287 (2003)

Oliver Krause, Stephan M. Birkmann, George H. Rieke, Dietrich Lemke, Ulrich Klaas, Dean C. Hines, Karl D. Gordon
No cold dust within the supernova remnant Cassiopeia A
Nature, 432, pp. 596-598, 8. Dezember 2004

Weitere Informationen erhalten Sie von:

Prof. Dietrich Lemke
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-259
E-Mail: lemke@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-229
E-Mail: staude@mpia.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpia.de

Weitere Berichte zu: Cassiopeia Supernova-Explosion Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterielle Nano-Harpune funktioniert wie Power-Bohrer

26.09.2017 | Biowissenschaften Chemie

eTRANSAFE – ein Forschungsprojekt für mehr Sicherheit bei der Arzneimittelentwicklung

26.09.2017 | Biowissenschaften Chemie

Die schnellste lichtgetriebene Stromquelle der Welt

26.09.2017 | Physik Astronomie