Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenhologramme aus der Nanowelt

17.12.2004


Röntgen-Hologramm eines mehrlagigen Cobolt-Platin-Films, gemessen mit zirkular polarisiertem Licht. BESSY


Aus dem Hologramm rückgerechnete wurmförmige magnetische Domänen. Sie unterscheiden sich nur durch ihre Magnetisierungsrichtung (blau: aufwärts, grün: abwärts). BESSY


Wissenschaftler von BESSY und SSRL veröffentlichen Arbeit in Nature


Die Entwicklung der ersten, einfachen Mikroskope brachte einen ernormen Schub an Erkenntnissen für die Naturwissenschaften. Um die in Natur und Technik ablaufenden Prozesse immer besser zu verstehen, werden seitdem Abbildungsverfahren mit immer höherem räumlichen Auflösungsvermögen und Instrumente für eine immer schnellere Beobachtung entwickelt. Derzeit können unterschiedliche Methoden bis in die Nanowelt sehen, wo Strukturen nur den millionsten Teil eines Millimeters groß sind, und dabei Prozesse verfolgen, die sich über wenige Pikosekunden (den milliardensten Teil einer tausendstel Sekunde) erstrecken. Am Berliner Elektronenspeicherring für Synchrotronstrahlung (BESSY) ist es nun erstmals gelungen, Hologramme von Nanostrukturen mit Röntgenstrahlung aufzunehmen.

Wissenschaftler um Stefan Eisebitt (BESSY) und Jan Lüning vom Stanford Synchrotron Radiation Labor (SSRL; USA) entwickelten dazu eine neuartige Versuchsanordnung, mit der sie in einem ersten Experiment die magnetischen Domänen eines Cobalt-Platin-Films mit einer Auflösung von 50 Nanometern abbilden konnten. Ihre Untersuchung veröffentlicht Nature als Titelbeitrag in seiner aktuellen Ausgabe. "Vorteile unserer Anordnung sind die einfache Justage, Unempfindlichkeit gegenüber Vibrationen während der Messung sowie ein sehr kostengünstiger Aufbau. Außerdem lässt sich die Holographie an Synchrotronstrahlungsquellen wie BESSY II mit besonderen spektroskopischen Kontrastmechanismen verknüpfen. Damit lassen sich z.B. die Verteilung einzelner Elemente in einer Probe oder Magnetisierungsmuster räumlich abbilden", hebt Stefan Eisebitt hervor. Die Röntgenholographie etablierte sich damit als alternative, leicht anzuwendende Methode zu bisherigen Messverfahren im Nanometerbereich.


Die Auflösung optischer Mikroskope ist durch die Wellenlänge des verwendeten Lichtes beschränkt, es können bestenfalls 200 Nanometer große Strukturen aufgelöst werden. Röntgenmikroskope, wie sie auch bei BESSY im Einsatz sind, erzielen aufgrund der kürzeren Wellenlänge von Röntgenstrahlen eine Auflösung von 20 Nanometern. Allerdings muss das Röntgenlicht mit speziellen Linsen gebündelt werden, deren Fertigung extrem aufwändig ist und deren Herstellungspräzision die räumliche Auflösung begrenzen. Die Holographie ist ein alternatives Abbildungsverfahren, das ohne Linsen auskommt. Das von einem Objekt gestreute Licht, als Objektstrahl bezeichnet, wird hierbei nicht durch eine optische Abbildung auf eine Ebene projiziert. Stattdessen nimmt man ein charakteristisches Interferenzmuster des Objektes auf, das durch die Überlagerung des Objektstrahls mit einem Referenzstrahl (Licht desselben "Typs", wie es für die Beleuchtung des Objektes benutzt wurde) entsteht. Dieses Interferenzmuster ist das Hologramm. Es enthält die komplette Information über die vom Objekt erzeugte Wellenfront, so dass sich daraus das Bild des Objektes rekonstruieren lässt. Allerdings kann nur kohärente Strahlung solche Hologramme erzeugen, denn nur dann interferieren Objekt- und Referenzstrahl miteinander. Im sichtbaren Spektralbereich benutzt man dazu Laser - aber diese existieren für den Röntgenbereich derzeit noch nicht.

Eisebitt und Lüning führten ihre Experimente am Berliner Elektronenspeicherring BESSY durch, derzeit eine der weltweit kohärentesten Quellen weicher Röntgenstrahlung. In ihrer für die Röntgenholographie neuen Versuchsanordnung liegen der Objekt- und Referenzstrahl nicht auf einer Achse. Dazu brachten sie die Probe auf eine mikrostrukturierte Maske auf, die ein zusätzliches "Nano-Loch" zur Erzeugung des Referenzstrahls enthält. Diese Geometrie erzeugt ein Interferenzmuster, aus dem sich das Objekt mit einer mathematischen Standartmethode - der zweidimensionalen Fast-Fourier-Transformation - mit hoher Auflösung zweifelsfrei zurückrechnen lässt. Die Masken-Methodik eliminiert Störungen der holographischen Abbildung wie sie in anderen Geometrien auftreten.

Interessant ist die Röntgenholographie auch hinsichtlich des Einsatzes an zukünftigen Röntgenlaserquellen, den Freie Elektronen Lasern (FEL). Sie werden extrem lichtstarkes, kohärentes Röntgenlicht in Pulsen von wenigen Femtosekunden Dauer erzeugen. Mit diesen Pulsen wollen Wissenschaftler u.a. grundlegende Prozesse, z.B. die Bewegung eines Atoms, zeitaufgelöst verfolgen. Eine Folge von Röntgenblitzen kombiniert mit einer entsprechend schnellen Abbildungsmethode könnte dazu stroboskopartige Momentaufnahmen der Bewegungen liefern. "Wir konnten zeigen, dass ein einziger FEL-Röntgenpuls ausreicht, um ein Röntgenhologramm zu erzeugen", betont Eisebitt. "Die Röntgenholographie sollte sich deswegen dafür eignen, um an einem FEL ultraschnelle Prozesse abzubilden und zu verstehen." Die Entwicklung und Planung von Freie Elektronen Lasern wird derzeit weltweit mit hohem Aufwand betrieben. U.a. plant BESSY den Bau eines FEL bis 2010.

Quelle: S.Eisebitt, J. Lüning, W.F. Schlotter, M.Lörgen, O.Hellwig, W.Eberhardt & J.Stöhr: Lensless imaging of magnetic nanostructures by x-ray spectro-holography (Nature, Vol 432, Seite 883, Titelbeitrag, 16. Dezember 2004)

Ansprechpartner: Dr. Stefan Eisebitt, Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, Tel.: +49 30 6392 4884, Email: stefan.eisebitt@bessy.de

Dr. Markus Sauerborn | idw
Weitere Informationen:
http://www.bessy.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten