Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strömungsverhalten in der Schwerelosigkeit: Raketenexperiment bereitete NASA-Weltraumeinsatz vor

13.12.2004


Wissenschaftler der Universität Bremen haben bei einem unbemannten Raketenflug das Strömungsverhalten von Flüssigkeiten unter Schwerelosigkeit untersucht. Dabei gewannen sie nicht nur eine Fülle wissenschaftlicher Daten, sondern testeten auch erfolgreich ihren Versuchsaufbau, der im Rahmen des NASA-Weltraumprogramms auf der Internationalen Raumstation ISS zum Einsatz kommen wird. Ziel der Forschung ist es, die Handhabung von Flüssigkeiten an Bord von Satelliten und Raumfahrzeugen zu optimieren.


Das Bild zeigt einen Ausschnitt eines durchsichtigen Kapillarkanals, durch den Flüssigkeit strömt. Fließt sie zu schnell, wird Gas von den offenen Seiten des Kanals (links und rechts) eingesaugt, die Strömung reißt ab.



Am 2. Dezember 2004 startete in der Nähe von Kiruna in Nordschweden eine Forschungsrakete im Auftrag des Deutschen Zentrums für Luft- und Raumfahrt (DLR). Während des parabelförmigen Fluges, bei dem die Rakete eine Höhe von 250 Kilometern erreichte, herrschte für etwa sechs Minuten Schwerelosigkeit. Mit an Bord war ein Experiment des Zentrums für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen. Das Forscherteam unter der Leitung von Privatdozent Dr.-Ing. Michael Dreyer untersuchte das Strömungsverhalten einer Flüssigkeit in der Schwerelosigkeit.



Flüssigkeiten verhalten sich unter Schwerelosigkeit völlig anders als auf der Erde. Während hier die Schwerkraft dafür sorgt, dass sich zum Beispiel Benzin am Boden eines Autotanks sammelt, verteilt sich flüssiger Treibstoff unter Schwerelosigkeit an den Tankwänden. Um ihn zum Auslass zu transportieren, nutzen die Wissenschaftler ein bekanntes physikalisches Prinzip: die Kapillarkraft.

Kapillarkräfte entstehen durch die Oberflächenspannung von Flüssigkeiten. Auf der Erde treten sie vor allem in haarfeinen Röhren (Kapillaren) auf. Das kann man zum Beispiel beim Arzt beobachten, wenn ein Blutstropfen in einem Glasröhrchen von selbst aufsteigt. Kapillarkräfte sind ebenfalls am Werk, wenn ein Löschblatt Tinte aufsaugt. Auf der Erde werden die Kapillarkräfte durch die Schwerkraft begrenzt, unter Schwerelosigkeit jedoch nicht.

Nicht nur in Röhrchen treten Kapillarkräfte auf, sondern auch zwischen zwei parallel stehenden Platten, etwa den Glasscheiben eines Doppelfensters. Dieses Prinzip wird in Satellitentanks verwendet. Mehrere schmale Platten, sogenannte Steighilfen, werden parallel zur Tankwand angebracht. Sobald Schwerelosigkeit herrscht, beginnt aufgrund der Kapillarkräfte der Treibstoff zwischen Tankwand und Platte zu fließen. Statt sich irgendwo im Tank zu verteilen, strömt der Treibstoff nun von selbst zum Auslass und kann von dort weiter zum Raketentriebwerk geleitet werden.

Das Prinzip ist einfach, doch im Detail sind diverse Probleme zu lösen. So darf die Fließgeschwindigkeit nicht zu hoch werden, weil sonst der Flüssigkeitsstrom abreißt. Die Triebwerke würden nicht kontinuierlich Treibstoff bekommen, die Lageregelung des Raumfahrzeug wäre gestört. Zum Verständnis dieser Probleme hat der Raketenflug eine Fülle von Daten erbracht, die nun ausgewertet werden.

Das von den Bremern entwickelte und von der Firma EADS Space Transportation gebaute Experimentmodul hat sich als so erfolgreich erwiesen, dass die NASA es in ihr Weltraumprogramm aufgenommen hat. 2008 wird es in erweiterter Form drei Monate lang auf der Internationalen Weltraumstation ISS eingesetzt, wo es auch amerikanische Wissenschaftler nutzen werden.

Weitere Informationen:

Universität Bremen
Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation
PD Dr. Michael Dreyer
Tel.: 0421- 218 40 38
Email: dreyer@zarm.uni-bremen.de

Angelika Rockel | idw
Weitere Informationen:
http://www.zarm.uni-bremen.de/2forschung/grenzph/index.htm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten