Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ASDEX Upgrade löst Instabilitäten auf

12.11.2004


Theorie für internationalen Experimentalreaktor ITER bestätigt / Kraftwerkshindernis beseitigt


Eine Instabilität entsteht: Die zunächst sauber ineinander geschachtelten magnetischen Flächen (oben) verformen sich – es bilden sich magnetische Inseln (unten).



Ein Höhepunkt auf der internationalen Konferenz zur Fusionsenergie (20th IAEA Fusion Energy Conference) vergangene Woche in Vilamoura/Portugal waren Ergebnisse der Forschungsanlage ASDEX Upgrade, die das Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München als größtes deutsches Fusionsexperiment betreibt: Hier gelang die wirkungsvolle Bekämpfung besonders unerwünschter Instabilitäten im Plasma. Ohne Gegenmaßnahmen könnten sie im geplanten Testreaktor ITER und in einem späteren Fusionskraftwerk die Leistungsausbeute stark herabsetzen.

... mehr zu:
»ASDEX »Feldlinie »ITER »Kraftwerk »Plasmadruck »Upgrade


Ziel der weltweiten Bemühungen um die Kernfusion ist die Entwicklung eines Kraftwerks, das – ähnlich wie die Sonne – Energie aus der Verschmelzung von Atomkernen gewinnt. Zum Zünden des Fusionsfeuers muss der Brennstoff, ein Wasserstoff-Plasma, auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Um die hohe Temperatur aufrecht erhalten zu können, muss es gelingen, den Brennstoff in Magnetfeldern berührungsfrei und wärmeisolierend einzuschließen. Das komplexe Wechselspiel zwischen Plasmateilchen und magnetischem Käfig macht jedoch eine ganze Reihe von Instabilitäten möglich, die den Einschluss verschlechtern. Besonders unerwünscht sind so genannte „Neoklassische Tearing-Moden“: Sie treten auf, wenn Temperatur und Druck des Plasmas in die Nähe der Zündwerte kommen.

Wie gefährlich diese Instabilitäten für die Leistungsfähigkeit des geplanten internationalen Fusionstestreaktors ITER sein können, rechneten die Plasmatheoretiker des IPP bereits vor sechs Jahren vor: Die Obergrenze für den Plasmadruck liegt nämlich um so niedriger, je größer die Anlagen sind – bei ITER zehn mal niedriger als bei dem kleineren ASDEX Upgrade: also eine erhebliche Schwierigkeit für ITER und ein ernst zu nehmendes Hindernis auf dem Weg zu einem wirtschaftlich arbeitenden Kraftwerk. Unter Leitung des IPP sollte daher eine europäische Gruppe das Problem für ITER lösen. Beteiligt sind Wissenschaftler der Universität Stuttgart sowie der Fusionszentren in England, den Niederlanden und Italien.

Um die Tearing-Moden bekämpfen zu können, muss man zuvor ergründen, warum sie entstehen: Beim Bau des Magnetfeldkäfigs für das Plasma nutzen die Fusionsforscher aus, dass die geladenen Plasmateilchen – Ionen und Elektronen – von elektromagnetischen Kräften auf Schraubenbahnen um magnetische Feldlinien gezwungen werden. Von einem geeignet geformten Magnetfeld wie auf Schienen geführt, können die schnellen Teilchen so von den Wänden des Plasmagefäßes ferngehalten werden. Für einen „dichten“ Käfig müssen die Feldlinien innerhalb des ringförmigen Plasmagefäßes geschlossene, ineinander geschachtelte Flächen aufspannen – wie die ineinander liegenden Jahresringflächen eines Baumstamms. So werden nach außen weisende Feldkomponenten vermieden, die die Plasmateilchen auf die Wände führen würden. Die hohen Zündtemperaturen wären dann unerreichbar. Auf den magnetischen Flächen sind Dichte und Temperatur jeweils konstant, während von Fläche zu Fläche – vom heißen Zentrum nach außen – Dichte, Temperatur und Plasmadruck abnehmen.

Soweit das Prinzip – wären da nicht die Instabilitäten, die das einschließende Magnetfeld verformen. Wie die genaue Analyse zeigt, bilden sich im vormals symmetrischen Plasmaring blasenartige Störungen mit eigener, in sich geschlossener Magnetfeldstruktur: magnetische „Inseln“. Auslöser ist das Ansteigen des Plasmadrucks bei hoher Plasmatemperatur. Beim Entstehen der Inseln reißen die magnetischen Feldlinien auf (daher der Name "Tearing-Mode" von engl. "to tear": zerreißen) und verbinden sich mit den Feldlinien benachbarter magnetischer Flächen. Es kommt quasi zu einem magnetischen Kurzschluss. Da nun ein schneller Energieaustausch auch quer zu den Flächen möglich wird, sinken Plasmatemperatur und Plasmadruck über die Breite der Insel stark ab. Damit beschränken sie den erreichbaren Plasmadruck: Die Leistungsausbeute von ITER und einem späteren Kraftwerks würde sehr darunter leiden.

Da die Obergrenze für den Plasmadruck um so niedriger liegt, je größer die Anlagen sind, schienen in einem Kraftwerk die Tearing-Moden zunächst unvermeidlich. Umso größer war das Aufsehen, als es an ASDEX Upgrade 1999 erstmals gelungen war, die Bildung dieser magnetischen Inseln zu behindern: Dazu hat man gezielt – auf Zentimeter genau – Mikrowellen in die Mitte einer entstehenden Insel eingestrahlt. So wurde lokal ein elektrischer Strom erzeugt, der die Insel auflöst. Die Magnetfeldstörung wird unterdrückt und der Plasmadruck kann wieder ansteigen. Durchschlagenden Erfolg hatte man dann ein Jahr später, als es gelang, eine Insel gänzlich wegzupusten. Bestätigt werden konnte die neue Methode kurz danach an Fusionsanlagen in den USA und in Japan.

Wie die IPP-Wissenschaftler auf der Konferenz berichten konnten, ist es nun an ASDEX Upgrade nicht nur gelungen, eine besonders störende Tearing-Mode zu stabilisieren, die bis zum Abbruch der Entladung führen kann. Nach der Verbesserung des Zielverfahrens gelang dies auch noch mit sehr geringer Mikrowellenleistung: Zur Stabilisierung genügten – präzise in die richtige Stelle eingestrahlt – weniger als zehn Prozent der insgesamt aufgewandten Heizleistung. Professor Dr. Hartmut Zohm vom ASDEX Upgrade-Team: „Wir sind jetzt sicher, ein Instrument zur Kontrolle der magnetischen Inseln gefunden zu haben. Nun müssen wir untersuchen, ob es für ITER alltagstauglich ist“.

Um diesen Schritt von der Physik zur Technik zu gehen, will man das Verfahren automatisieren: Das Erkennen der Inseln und ihr Anzielen per Mikrowelle soll in die automatisierte Feed-Back-Steuerung von ASDEX Upgrade aufgenommen werden. Das System soll die Ausbildung einer Insel selbständig registrieren, dann die Insel mit beweglichen Spiegeln anvisieren und den Mikrowellenstrahl auslösen. In den ITER-Plänen ist für diesen Zweck bereits eine steuerbare Einkopplung für Mikrowellen vorgesehen (vgl. PI 6/04).
Isabella Milch

Weitere Informationen erhalten Sie von:

Max-Planck-Institut für Plasmaphysik
Abteilung Öffentlichkeitsarbeit
Boltzmannstraße 2, D-85748 Garching
Tel. 089-3299-1288
Fax: 089-3299-2622

Max-Planck-Gesellschaft | Isabella Milch
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: ASDEX Feldlinie ITER Kraftwerk Plasmadruck Upgrade

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie