Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ordnung aus Quantenfluktuationen

12.11.2004


Temperatur-Magnetfeld-Phasendiagramm für die Substanz Sr3Ru2O7, in der ein neuartiger Zustand bei einem Magnetfeld nahe 8 Tesla (gelb unterlegt) eintritt. Die Phasengrenzlinien wurden durch verschiedene Messungen belegt.
Bild: Max-Planck-Institut für chemische Physik fester Stoffe


Internationales Forscherteam beobachtet die Bildung eines bisher unbekannten Zustands in einer metallischen Verbindung


Am absoluten Temperaturnullpunkt bestimmen Quanten- statt thermische Fluktuationen die Physik, so dass neuartige Effekte in metallischen Systemen auftreten können. Einem internationalen Wissenschaftlerteam unter Mitarbeit von Forschern des Dresdner Max-Planck Instituts für chemische Physik fester Stoffe ist es jetzt gelungen, in extrem sauberen Einkristallen der metallischen Verbindung Sr3Ru2O7 einen neuartigen ferromagnetisch geordneten Zustand nachzuweisen. Diese Ordnung wird durch spezielle "quantenkritische Fluktuationen" erzeugt, die in einem Magnetfeld bei extrem tiefen Temperaturen auftreten. Die Beobachtungen sind von grundlegender Bedeutung, da sie zu einem besseren Verständnis des komplexen Verhaltens stark wechselwirkender Quantensysteme beitragen und die Suche nach weiteren unbekannten Phasenzuständen motivieren. Noch ist völlig offen, in welchem Zusammenhang diese Entdeckung in Zukunft angewandt werden könnte (Science, 12. November 2004).

Exotische Phänomene in Festkörpern, wie der gebrochenzahlige Quanten-Hall-Effekt oder die unkonventionelle Supraleitung, kommen durch komplizierte Vielteilchen-Wechselwirkungen im Festkörper zustande, die sich nicht aus den unmittelbaren Eigenschaften ihrer atomaren Bausteine ableiten lassen und deren besseres Verständnis das Ziel vieler Forschergruppen weltweit ist.


Eine exzellente Möglichkeit hierfür bietet das Studium von Materialien in der Nähe des so genannten "quantenkritischen Punkts": Dieser bezeichnet den Übergang einer Substanz am absoluten Temperaturnullpunkt zwischen zwei verschiedenen Grundzuständen. Dieser Übergang wird durch die gezielte Veränderung eines äußeren Parameters wie Druck oder Magnetfeld getrieben. Obwohl der absolute Nullpunkt prinzipiell unerreichbar ist, können die quantenkritischen Fluktuationen, also der ständige Wechsel zwischen beiden Grundzuständen - eine direkte Folge der Heisenbergschen Unschärfe - das Verhalten von Materialien auch schon weit oberhalb des Nullpunkts dominieren. So führt die Wechselwirkung der quantenkritischen Fluktuationen mit den Ladungsträgern in Metallen zu stark anomalem Verhalten.

Unter geeigneten Umständen können starke Quantenfluktuationen sogar zur Bildung von neuartigen Zuständen führen. So hat man für einige antiferromagnetisch geordnete metallische Verbindungen in Druckexperimenten nachgewiesen, dass in unmittelbarer Nähe zum quantenkritischen Punkt unkonventionelle Supraleitung auftritt. Man vermutet hierbei, dass die Quantenfluktuationen eine anziehende Wechselwirkung zwischen den Ladungsträgern vermitteln, die dann zur unkonventionellen Supraleitung führt. Dieser Zustand ist äußerst empfindlich gegenüber kleinsten Verunreinigungen und konnte daher nur in extrem sauberen Proben beobachtet werden.

Bislang wurde spekuliert, dass starke Quantenfluktuationen auch noch andere Formen von geordneten Zuständen bewirken könnten, insbesondere dann, wenn sie durch Magnetfelder erzeugt werden und damit die Supraleitung unterdrücken. Jetzt konnte das internationale Physikerteam diese Vermutung bei Untersuchungen an der metallischen Verbindung Sr3Ru2O7 erstmals experimentell bestätigen. In dieser Verbindung kann man Ferromagnetismus durch Anlegen eines äußeren Magnetfelds induzieren - man spricht dann von "Metamagnetismus", weil die ferromagnetische Ordnung erst bei Magnetfeldern auftritt, die einen gewissen Schwellenwert überschreiten. In Sr3Ru2O7 lässt sich die metamagnetische Übergangstemperatur kontinuierlich zum absoluten Nullpunkt unterdrücken, in dem man die Richtung des angelegten Magnetfelds verändert. Dies führt zu starken quantenkritischen Fluktuationen.

Für die Phasenbildung in der Nähe des quantenkritischen Punkts ist es notwendig, den Einfluss von Störungen im Kristallgitter zu minimieren. So tritt unkonventionelle Supraleitung in der Nähe eines antiferromagnetischen quantenkritischen Punkts nur in extrem sauberen Proben auf. Daher mussten die Forscher extrem reine Einkristalle der Substanz Sr3Ru2O7 herstellen. Dies gelang durch sukzessive Verbesserung der Einkristallzüchtung innerhalb der vergangenen vier Jahre in Kyoto/Japan. An ausgewählten Einkristallen wurde der elektrische Widerstand (in St. Andrews, Schottland), die Magnetisierung (Tokyo) und die magnetische Suszeptibilität (St. Andrews) sowie die Längenausdehnung im Magnetfeld (Dresden) untersucht. Alle Messergebnisse sind untereinander konsistent und belegen, dass in dem Material bei tiefen Temperaturen und unter dem Einfluss eines Magnetfeldes ein neuartiger Zustand eintritt (vgl. Abbildung).

Weitere Experimente belegen, dass der neuartige Zustand eindeutig mit den Fluktuationen des zugrunde liegenden quantenkritischen Punkts verknüpft ist. Die genaue Natur des neuen Zustands ist noch nicht bekannt, doch die Experimente belegen, dass die Elektronen im Magnetfeld spontan polarisiert werden. Üblicherweise richtet sich die Polarisation der Elektronen nach der Symmetrie des zugrunde liegenden Kristallgitters - in diesem Fall eine 4-zählige Symmetrie in der Ebene senkrecht zum angelegten Feld. Doch die Experimente an Sr3Ru2O7 lassen nun erkennen, dass der neue Zustand eine reduzierte Symmetrie (nur noch 2-zählig) aufweist, die es einem größeren Anteil der Elektronen ermöglicht, sich nach dem äußeren Magnetfeld auszurichten.

Die Experimente der Dresdner Gruppe zeigen, dass dies - über eine starke magnetoelastische Kopplung - zu einer Verzerrung des Kristallgitters in dem Material führt. Ein solcher Symmetriebruch sollte energetisch ungünstig im Vergleich zum üblichen Ferromagnetismus sein. Was ist nun derart speziell an der Verbindung Sr3Ru2O7? Zum einen sind zur Bildung der neuen Phase starke Fluktuationen in den elektronischen Eigenschaften notwendig, wie sie hier durch den nahen metamagnetischen quantenkritischen Punkt hervorgerufen werden. Außerdem wird dieser Mechanismus schnell durch Verunreinigungen unterdrückt und kann daher nur in extrem sauberen Materialien beobachtet werden.

Diese Befunde zeigen, dass quantenkritische Fluktuationen in Stoffen dazu führen können, dass sich neue Arten von geordneten Zuständen ausbilden. Die Entdeckung des unbekannten Zustands ermöglicht ein besseres Verständnis der komplizierten Wechselwirkungen zwischen den Elektronen in einem Festkörper. Zudem motiviert sie die Suche nach weiteren derartigen Zuständen in der Nähe von quantenkritischen Punkten.

Originalveröffentlichung:

S.A. Grigera, P. Gegenwart, R.A. Borzi, F. Weickert, A.J. Schofield, R.S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A.G. Green, and A.P. Mackenzie, "Disorder-sensitive phase formation linked to metamagnetic quantum criticality", Science, 12 November 2004

Weitere Informationen erhalten Sie von:

Dr. Philipp Gegenwart
School of Physics and Astronomy
University of St. Andrews
St. Andrews, Scotland
Tel.: +44-1334-463075
Fax: +44-1334-463104
E-Mail: pg14@st-andrews.ac.uk oder gegenwart@cpfs.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www-cpfs.mpg.de

Weitere Berichte zu: Fluktuation Magnetfeld Quantenfluktuation Sr3Ru2O7

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie