Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartiger Käfig für Licht

03.11.2004


Hallenser Max-Planck-Wissenschaftlern erzeugen "Photonenkäfige" in hochsymmetrischen dreidimensionalen Strukturen aus Silizium


Rasterelektronenmikroskopische Aufnahmen von dreidimensional strukturiertem Silizium. a) Bruchkante mit 3 Poren und 3 Modulationen. b) Eine einzelne geätzte Modulation. c) Durch schrittweises Erodieren wandelt sich die säulenartige Struktur um in ein einfaches kubisches Netzwerk aus Luftkugeln in Silizium. d) Aus der Vogelperspektive: Zu erkennen sind das lithographisch definierte Gitter (obere Bildhälfte) und das geätzte Gitter (untere Bildhälfte).

Bild: Max-Planck-Institut für Mikrostrukturphysik



Die präzise Selbstanordnung von Materie in Materialstrukturen, die über abstimmbare Eigenschaften verfügen und in der Natur nicht vorkommen, ist ein wichtiges Ziel der Nanotechnologie. Wissenschaftlern des Max-Planck-Instituts für Mikrostrukturphysik in Halle/Saale ist es jetzt gelungen, ein solches Metamaterial herzustellen, einen so genannten "Photonenkäfig". Dazu haben die Forscher die Präzision lithographischer Methoden mit einem dreidimensionalen, sich selbst stabilisierenden Ätzprozess kombiniert und in Silizium hochperiodische kubische Strukturen - Milliarden identischer Poren pro Kubikzentimeter -hergestellt (Advanced Materials, Online-Vorabveröffentlichung, 26. Oktober 2004). Das ist speziell für optische Schaltkreise, die großen Hoffnungsträger für künftige Computer und Telekommunikationsgeräte, von Bedeutung. Denn wo heute Elektronen in Silizium-Halbleiter komplizierte Rechenvorgänge erledigen, sollen dann Photonen die Arbeit übernehmen.



Periodische und hochsymmetrische Gebilde, die nur einige Mikrometer groß sind und mit einer Präzision auf Nanometerebene hergestellt werden, beeindrucken nicht nur durch ihre ungewöhnliche Form und Schönheit, sie zeigen auch eine Vielzahl neuartiger Effekte, wie die gezielte Manipulation von Licht in so genannten Photonischen Kristallen, die Anwendung als Vorlage für Nanostrukturen oder als Grundbaustein von Metamaterialien. Aufgrund dieses Potentials unternimmt man weltweit große Anstrengungen, derartige Strukturen künstlich herzustellen. Den enormen Anforderungen an Präzision und Variabilität der strukturellen Netzwerke versuchte man bislang auf zwei unterschiedlichen Wegen zu begegnen: Zum einen durch sehr aufwändige und langwierige Methoden, die auf vielen Lithographie- und Ätzschritten beruhen, jedoch auch sehr akkurate Ergebnisse liefern. Zum anderen durch eine einfach anmutende Methode - das Eintrocknen von in Lösung befindlichen nanometerkleinen Glaskügelchen und das anschließende Auffüllen der dazwischen verbleibenden Hohlräume mit Silizium.

Die Forscher am Max-Planck-Institut für Mikrostrukturphysik in Halle haben nun ein neues Verfahren demonstriert, dass die Präzision lithographischer Methoden mit der Einfachheit sich selbst organisierender Prozesse kombiniert. Dazu wurde ein zweidimensionales Gitter lithographisch auf die Oberfläche einer Siliziumscheibe aufgebracht. Mittels eines Standardprozesses stellten die Forscher dann winzige Vertiefungen her, die als Ausgangspunkt für die Poren dienen. Danach wurde die Siliziumscheibe auf der einen Seite mit einer Flusssäure-Lösung in Kontakt gebracht und eine anodische Spannung angelegt. Beleuchtet man nun die andere Seite des Wafers, so erzeugt man je nach Intensität des Lichts unterschiedlich viele Elektron-Loch-Paare in dem Halbleiter. Die Elektronen werden aufgrund des anliegenden Potentials an der Rückseite konsumiert. Hingegen diffundieren die "elektronischen Löcher" zur Grenzfläche zwischen Silizium und Flusssäure. Aufgrund der anliegenden Spannung bildet sich eine Raumladungszone aus, die wie ein Linse auf die Defektelektronen wirkt und diese hauptsächlich auf die Porenspitzen fokussiert, wo sie das Silizium oxidieren.

Das gebildete Siliziumdioxid wird durch die Flusssäure sofort aufgelöst und die Poren wachsen in die Tiefe. Den Durchmesser der Poren kann man über die Intensität der Beleuchtung steuern. Um stellenweise besonders weite Poren zu erhalten, muss man die Variation der Beleuchtungsintensität mit einer speziellen Variation der angelegten elektrischen Spannung kombinieren. Erst die Kombination beider Ätzmethoden ermöglicht eine hohe Perfektion und die Herstellung von Milliarden identischer Poren auf einem Quadratzentimeter (vgl. Abb. 1a). In einem weiteren Schritt werden der Durchmesser der geätzten Poren dann schrittweise vergrößert und schließlich Netzwerke kubisch angeordneter, miteinander überlappender Luftkugeln in Silizium erzeugt.

Die Forscher haben die optischen Eigenschaften entlang verschiedener Richtungen dieses Photonischen Kristalls untersucht. Ihre Ergebnisse deuten darauf hin, dass mit diesem Verfahren tatsächlich "Käfige" für Photonen hergestellt werden können. Denn Photonen, also Lichtteilchen, bewegen sich mit 300.000 Kilometer pro Sekunde im Vakuum. Beim Übergang in ein anderes Medium werden sie abgebremst und ihre Geschwindigkeit reduziert sich um den Brechungsindex. Passiert das Licht eine Folge von Schichten zweier Materialien A und B (ABABAB…), werden die Lichtteilchen periodisch beschleunigt oder abgebremst. Ist die Länge einer Doppelschicht (AB) vergleichbar mit der Lichtwellenlänge, so modifiziert dies die Lichtausbreitung, so dass Lichtteilchen bestimmter Energie an der Schicht reflektiert werden. In drei Dimensionen führt dieses Verhalten dazu, das ein Photon, egal in welche Richtung es sich bewegt, überall reflektiert wird und letztlich eingesperrt ist.

Originalveröffentlichung:

Sven Matthias, Dr. Frank Müller, Dr. Cécile Jamois, Prof. Dr. Ralf B. Wehrspohn & Prof. Dr. Ulrich Gösele, "Large-area three-dimensional structuring by electrochemical etching and lithography", Adv. Mater. 2004, Early View, DOI 10.1002/adma.200400436, 26. Oktober 2004

Weitere Informationen erhalten Sie von:

Sven Matthias
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Tel.: 0345 5582-901
Fax: 0345 5511223
E-Mail: matthias@mpi-halle.mpg.de

Sven Matthias | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-halle.mpg.de

Weitere Berichte zu: Lichtteilchen Photon Präzision Silizium

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten