Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supernova als Quelle kosmischer Strahlung

03.11.2004


Zwei der vier H.E.S.S.-Teleskope im Khomas Hochland von Namibia, etwa 1.800 Meter über dem Meeresspiegel. Das Gesamtsystem von vier Teleskopen ist seit Ende 2003 komplett im Betrieb. Die Spiegel von jeweils 13 Meter Durchmesser bestehen aus 380 Einzelelementen, welche die von den Gammaquanten erzeugten Cherenkov-Lichtblitze auf den Detektor ("Kamera") bündeln. Eingeblendet ist ein Bild von Viktor F. Hess. Im Hintergrund sieht man den berühmten Gamsberg in Namibia.

Bild: Max-Planck-Institut für Kernphysik


Gamma-Bild des Supernova-Überrests RX J1713.7-4946 im Sternbild Scorpio, erzeugt mit den H.E.S.S.-Teleskopen. Hierbei handelt es sich um die erste astronomische Aufnahme, die im Licht der Teraelektronenvolt-Gammastrahlung gemacht werden konnte. Die lineare Farbskala der Säule rechts ist in Einheiten der Zahl von gemessenen Gamma-Ereignissen . Die über das Gamma-Bild gelegten linear ansteigenden Konturlinien zeigen die Flächendichte der Röntgen-Helligkeit, wie sie der ASCA-Satellit im Energiebereich von 1-3 Kiloelektronenvolt mit ähnlicher Winkelauflösung wie H.E.S.S. gesehen hat. Dies erlaubt einen direkten Vergleich der beiden Bilder. Das Objekt hat einen zweifach größeren Durchmesser als der Mond am Himmel.

Bild: Max-Planck-Institut für Kernphysik


H.E.S.S.-Forscherteam identifiziert erstmals Supernova-Explosionswolke als Quelle hochenergetischer Kosmischer Strahlung


Die Erdatmosphäre wird ständig von einem Strom hochenergetischer nuklearer Teilchen aus dem Weltraum, der Kosmischen Strahlung, getroffen. Doch trotz intensiver Suche ist es bisher nicht gelungen, die Quellen dieser Teilchen zu finden. Man vermutet sie in Sternexplosionen, den so genannten Supernovae. Wissenschaftler des Max-Planck-Instituts für Kernphysik in Heidelberg um Prof. Heinrich Völk und Prof. Werner Hofmann haben jetzt derartige Supernovae im Licht hochenergetischer Gammastrahlung untersucht - gemeinsam mit Kollegen aus deutschen Universitäten, ausländischen Forschungsinstituten aus Frankreich und anderen europäischen Ländern sowie aus Namibia, Südafrika und Armenien. Dabei gelang ihnen mit dem gerade in Betrieb genommene H.E.S.S.-Teleskop (High Energy Stereoscopic System) in Namibia, eine derartige Quelle der Kosmischen Strahlung nachzuweisen. Die Gammastrahlung kommt aus der Explosionswolke einer Supernova und ist - wie erwartet - auf deren äußere Schale konzentriert. Dieser Fund bestätigt die Meldung einer japanisch-australischen Gruppe, die erste Anzeichen einer solchen Quelle vor einigen Jahren veröffentlicht hatte. Mit dem H.E.S.S.-Teleskop war es nun zum ersten Mal möglich, ein räumlich hoch aufgelöstes Gamma-Bild dieser Quelle zu erzeugen. Diese hat die doppelte Größe des Vollmonds am Himmel, ihr Energie-Spektrum ist konsistent mit den heutigen Vorstellungen über die Beschleunigung atomarer Teilchen in den Überresten von Supernovae (Nature, 4. November 2004).

Die Kosmische Strahlung wurde 1912 von dem österreichischen Physiker Viktor F. Hess entdeckt, der dafür 1936 den Nobelpreis erhielt. Diese Teilchenstrahlung trifft nicht nur auf die Raumfahrzeuge außerhalb der Atmosphäre, sondern dringt zum kleineren Teil bis hinunter zum Erdboden vor. Auf ihrem Weg erzeugt sie Störsignale in allen technischen Geräten, die gegen ionisierende Strahlung empfindlich sind, und ist ein Langzeit-Risiko für das Personal auf interkontinentalen Flügen. Allgemein gilt die ionisierende Wirkung der Kosmischen Strahlung über das gesamte Erdalter hinweg als einer der Motoren, die durch genetische Veränderungen in Pflanzen und Tieren die Entwicklung des Lebens auf der Erde vorantreiben. Zugleich zeigen Beobachtungen der Gammastrahlung aus der uns umgebenden Galaxis, der Milchstrasse, dass die Kosmische Strahlung praktisch überall existiert.


Da die Teilchen der Kosmischen Strahlung zum allergrößten Teil elektrisch geladen sind, werden sie durch die Magnetfelder im interstellaren Raum abgelenkt, so dass man aus ihrer Ankunftsrichtung nicht mehr auf ihre ursprüngliche räumliche Herkunft schließen kann. Um ein "Bild" der Teilchenquelle erzeugen zu können, muss man also elektrisch neutrale Strahlung, wie zum Beispiel Gamma-Teilchen, registrieren, die zusammen mit der geladenen Strahlungskomponente erzeugt werden. Ihre Ankunftsrichtung zeigt wie ein Lichtsignal auf die Quelle zurück, so dass man diese identifizieren kann. Deshalb benutzt man seit mehr als zwei Jahrzehnten Teleskope der Gamma-Astronomie.

Die Heidelberger Max-Planck-Wissenschaftler haben deshalb mit ihren Kollegen ganz spezielle erdgebundene Gammastrahlungs-Teleskope entwickelt und gebaut, um unter anderem auch die Quellen der Gammastrahlung aus Supernovae zu finden. Das erste Experiment dieser Art entstand unter dem Namen "HEGRA" auf La Palma und besteht aus fünf so genannten Cherenkov-Teleskopen, die ein Objekt gleichzeitig beobachten. Mit HEGRA gelang der Nachweis einer solchen Quelle in dem Supernova-Überrest Cassiopeia A im Sternbild Cassiopeia. Diese Beobachtung stimmte im Detail mit den Vorhersagen aus theoretischen Berechnungen und den Erwartungen an Supernova-Quellen überein. Allerdings war bislang kein anderes Teleskop auf der Nordhalbkugel empfindlich genug, um dieses Resultat zu bestätigen. Deshalb ist es wichtig, dass man diese Quelle mit neu entstehenden Teleskopen auf der Nordhalbkugel im Einzelnen untersucht, wie etwa dem MAGIC-Teleskop auf La Palma, an dem Forscher des Max-Planck-Instituts für Physik in München maßgeblich beteiligt sind.

Mit dem mittlerweile in Namibia auf der südlichen Halbkugel in Afrika aufgebauten, zehnmal empfindlicheren Nachfolge-Experiment H.E.S.S., einem koinzidenten System vom vier wesentlich größeren Teleskopen, war es nun möglich, schon während der Aufbauphase Ende 2003 den Supernova-Überrest mit dem Katalognamen RX J1713.7-3946 nicht nur bei sehr hohen Gamma-Energien von etwa 1012 Elektronenvolt (= 1 TeV) zu entdecken, sondern erstmals davon auch eine zweidimensionale Karte mit einer Winkelauflösung im Bogenminuten-Bereich zu erzeugen (siehe Abb. 2).

Der Supernova-Überrest wurde bereits 1996 von Wissenschaftlern des Max-Planck-Instituts für extraterrestrische Physik in Garching mit dem Röntgen-Satelliten ROSAT bei einer etwa eine Milliarde Mal kleineren Energie entdeckt. Das neue Gamma-Bild stimmt erstaunlich gut mit den inzwischen auch verfeinerten Röntgenbildern überein. Da die Gammaquanten nur von geladenen Teilchen noch höherer Energie erzeugt werden können, zeigt die Entdeckung mit dem H.E.S.S.-Teleleskop eindeutig, dass in dieser Quelle die geladenen Teilchen tatsächlich auf Energien von über 100 TeV beschleunigt werden. Allerdings stellt sich diese Quelle als ein komplexes astronomisches Objekt heraus. Deshalb bedarf es noch weiterer Untersuchungen dieser Himmelserscheinung insbesondere im Radiobereich, um sicher sagen zu können, dass sie nicht nur höchstenergetische Elektronen, sondern auch nukleare Teilchen dieser Energien erzeugt.

"Das erste Bild eines Supernova-Überrests im Bereich von Teraelektronenvolt ist ein wichtiger Schritt, um die Frage nach dem Ursprung der galaktischen Kosmischen Strahlung zu beantworten. Gleichzeitig markiert diese Entdeckung den erfolgreichen Start einer neuen astronomischen Abbildungstechnik bei Photonenenergien, die um einige zwölf Größenordnungen höher sind als die des sichtbaren Lichts," sagt Prof. Heinrich Völk, Direktor der Abteilung "Astrophysik" am Max-Planck-Institut für Kernphysik.

Originalveröffentlichung:

Aharonian, F.A. et al. (H.E.S.S. Collaboration), "Direct Evidence for high-energy particle acceleration in the shell of a supernova remnant", Nature, 4 November 2004

Aharonian, F.A. et al. (HEGRA Collaboration), "Evidence for TeV gamma ray emission from Cassiopeia A", Astron. & Astrophys., vol. 370, p. 112-120, 2001

Berezhko, E.G., Pühlhofer, G. & Völk, H.J., "Gamma-ray emission from Cassipeia A produced by accelerated cosmic rays", Astron. & Astrophys., vol. 400, p. 971-980, 2003

Berezhko, E.G. & Völk, H.J., "Direct evidence of efficient cosmic ray acceleration and magnetic field amplification in Cassiopeia A", Astron. & Astrophys., vol 419, L27-L30, 2004

Weitere Informationen erhalten Sie von:

Prof. Heinrich Völk
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: 06221 516-295, Fax: -549
E-Mail: Heinrich.Voelk@mpi-hd.mpg.de

Prof. Werner Hofmann
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: 06221 516-330, Fax: -603
E-Mail: Werner.Hofmann@mpi-hd.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Berichte zu: Cassiopeia Gammastrahl Strahlung Supernova Völk

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie