Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie konstant sind Naturkonstanten?

19.10.2004


Präzisisionsmessungen mit Atomuhren ergeben eine Obergrenze für eine mögliche zeitliche Änderung



Ändern sie sich oder ändern sie sich nicht? Diese Frage treibt Astrophysiker und Theoretiker seit vielen Jahren um, wenn die Rede auf Naturkonstanten kommt. Sind Lichtgeschwindigkeit, Elementarladung oder Planckkonstante vom Anbeginn der Zeiten mit sich identisch geblieben - wie die Behauptung, Naturkonstante zu sein, vermuten lässt - oder nagt auch an diesen ehernen Größen der Zahn der Zeit? Physiker der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig haben jetzt mit Hilfe von Atomuhren und optischen Frequenznormalen eine zeitliche Änderung der Feinstrukturkonstanten alpha aufzuspüren versucht. Das Ergebnis: Die Wissenschaftler konnten mit ihren Präzisionsmessungen keine Variation feststellen. Sollte sich alpha dennoch zeitlich ändern, dann lediglich um weniger als einen Bruchteil von 2 · 10 hoch -15 pro Jahr und damit unterhalb der heute erreichbaren Messgenauigkeit. In der kommenden Ausgabe des Fachjournals Physical Review Letters werden die Ergebnisse präsentiert.



Ein Experiment, um eine Veränderung einer Naturkonstanten tatsächlich zu beobachten, sieht im Prinzip so aus: Miss eine Naturkonstante heute, warte eine Weile, miss die Naturkonstante erneut und schau nach, ob sich das Messergebnis verändert hat. Je kürzer die verstrichene Zeit zwischen den beiden Messungen, um so ähnlicher werden sich die beiden Messungen sein und um so genauer muss der Experimentator hinsehen, um eine Änderung überhaupt erkennen zu können - denn Naturkonstanten "leben" auf einer Zeitskala, die sich in Milliarden von Jahren misst. Schnelle Veränderungen innerhalb weniger Jahre sind da nicht zu erwarten. Die PTB-Physiker aus der Gruppe um Ekkehard Peik haben sich daher Zweierlei genommen: Erstens etwas Zeit - genauer gesagt: drei Jahre -, um ihre Messungen durchzuführen, und zweitens die präzisesten Messgeräte, die weltweit zur Verfügung stehen: Atomuhren und optische Frequenznormale.

Atomuhren und andere Frequenznormale basieren darauf, dass Elektronen eines Atoms von einem Energieniveau auf ein anderes wechseln können. Soll es ein höheres Energieniveau sein, muss das Elektron mit einer Portion Energie angeschubst werden. Solche elektronischen "Sprünge" haben sich Peik und seine Kollegen angesehen, da sich die Sprunghöhe verändern würde, sollte die Feinstrukturkonstante alpha sich als wankelmütig erweisen. Ein Ytterbium-Ion in einer elektrischen Falle diente als Messobjekt und die Mikrowellenfrequenz aus einer Cäsium-Atomuhr als Referenz. Bei den drei Jahre auseinander liegenden Messungen konnten keine signifikanten Änderungen dieser "elektronischen Sprunghöhen" beobachtet werden. Sollte es dynamische Entwicklungen der Konstanten in der Frühzeit des Universums gegeben haben, so sind diese in unserer Zeit offensichtlich so weit abgeklungen, dass sie an der Grenze heutiger Messpräzision nicht nachweisbar sind.

E. Peik et al.: New limit on the present temporal variation of the fine structure constant. Phys. Rev. Lett. 93 (17), 22.10.2004

Weitere Informationen:

Dr. Ekkehard Peik,
PTB-Arbeitsgruppe "Optische Uhren"
Telefon: (0531) 592-44 12,
E-Mail: ekkehard.peik@ptb.de

Dipl.-Journ. Erika Schow | idw
Weitere Informationen:
http://www.ptb.de

Weitere Berichte zu: Atomuhr Energieniveau Naturkonstante Peik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

Unternehmenssteuerung und Controlling im digitalen Zeitalter

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung

19.02.2018 | Materialwissenschaften

Wenn Eiweiße einander die Hand geben

19.02.2018 | Materialwissenschaften

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics