Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie konstant sind Naturkonstanten?

19.10.2004


Präzisisionsmessungen mit Atomuhren ergeben eine Obergrenze für eine mögliche zeitliche Änderung



Ändern sie sich oder ändern sie sich nicht? Diese Frage treibt Astrophysiker und Theoretiker seit vielen Jahren um, wenn die Rede auf Naturkonstanten kommt. Sind Lichtgeschwindigkeit, Elementarladung oder Planckkonstante vom Anbeginn der Zeiten mit sich identisch geblieben - wie die Behauptung, Naturkonstante zu sein, vermuten lässt - oder nagt auch an diesen ehernen Größen der Zahn der Zeit? Physiker der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig haben jetzt mit Hilfe von Atomuhren und optischen Frequenznormalen eine zeitliche Änderung der Feinstrukturkonstanten alpha aufzuspüren versucht. Das Ergebnis: Die Wissenschaftler konnten mit ihren Präzisionsmessungen keine Variation feststellen. Sollte sich alpha dennoch zeitlich ändern, dann lediglich um weniger als einen Bruchteil von 2 · 10 hoch -15 pro Jahr und damit unterhalb der heute erreichbaren Messgenauigkeit. In der kommenden Ausgabe des Fachjournals Physical Review Letters werden die Ergebnisse präsentiert.



Ein Experiment, um eine Veränderung einer Naturkonstanten tatsächlich zu beobachten, sieht im Prinzip so aus: Miss eine Naturkonstante heute, warte eine Weile, miss die Naturkonstante erneut und schau nach, ob sich das Messergebnis verändert hat. Je kürzer die verstrichene Zeit zwischen den beiden Messungen, um so ähnlicher werden sich die beiden Messungen sein und um so genauer muss der Experimentator hinsehen, um eine Änderung überhaupt erkennen zu können - denn Naturkonstanten "leben" auf einer Zeitskala, die sich in Milliarden von Jahren misst. Schnelle Veränderungen innerhalb weniger Jahre sind da nicht zu erwarten. Die PTB-Physiker aus der Gruppe um Ekkehard Peik haben sich daher Zweierlei genommen: Erstens etwas Zeit - genauer gesagt: drei Jahre -, um ihre Messungen durchzuführen, und zweitens die präzisesten Messgeräte, die weltweit zur Verfügung stehen: Atomuhren und optische Frequenznormale.

Atomuhren und andere Frequenznormale basieren darauf, dass Elektronen eines Atoms von einem Energieniveau auf ein anderes wechseln können. Soll es ein höheres Energieniveau sein, muss das Elektron mit einer Portion Energie angeschubst werden. Solche elektronischen "Sprünge" haben sich Peik und seine Kollegen angesehen, da sich die Sprunghöhe verändern würde, sollte die Feinstrukturkonstante alpha sich als wankelmütig erweisen. Ein Ytterbium-Ion in einer elektrischen Falle diente als Messobjekt und die Mikrowellenfrequenz aus einer Cäsium-Atomuhr als Referenz. Bei den drei Jahre auseinander liegenden Messungen konnten keine signifikanten Änderungen dieser "elektronischen Sprunghöhen" beobachtet werden. Sollte es dynamische Entwicklungen der Konstanten in der Frühzeit des Universums gegeben haben, so sind diese in unserer Zeit offensichtlich so weit abgeklungen, dass sie an der Grenze heutiger Messpräzision nicht nachweisbar sind.

E. Peik et al.: New limit on the present temporal variation of the fine structure constant. Phys. Rev. Lett. 93 (17), 22.10.2004

Weitere Informationen:

Dr. Ekkehard Peik,
PTB-Arbeitsgruppe "Optische Uhren"
Telefon: (0531) 592-44 12,
E-Mail: ekkehard.peik@ptb.de

Dipl.-Journ. Erika Schow | idw
Weitere Informationen:
http://www.ptb.de

Weitere Berichte zu: Atomuhr Energieniveau Naturkonstante Peik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics