Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antistress-Programm für Atome

14.10.2004


Forscher der Universität Frankfurt zeigen, dass Atome überschüssige Energie an andere Atome weitergeben können

... mehr zu:
»Elektron »Kernphysik »Neonatom

Atome können Stress an andere Atome weitergeben. Im Vergleich zu Atomen, die ihr Dasein alleine fristen, haben Atome, die in einer Flüssigkeit oder einem Cluster vorkommen, einen gleichermaßen effizienten wie erstaunlichen Weg entwickelt, überschüssige Energie los zu werden: Sie reichen diese einfach an ihren Nachbarn weiter. Dies belegen Experimente, die kürzlich eine von der Gruppe um Prof. Dr. Reinhard Dörner, Institut für Kernphysik der Universität Frankfurt, geführte Forscherkollaboration am Bessy Synchrotron (www.bessy.de) in Berlin herausgefunden hat.

Bereits 1997 hatte ein Forscherteam der Universität Heidelberg diesen Mechanismus postuliert (Cederbaum et al., Phys Rev. Lett, 15 Dec 1997), der nur dann auftritt, wenn Atome sich zu Gruppen zusammenschließen. Sobald ein angeregtes Teilchen sich in der Nähe von anderen Atomen befindet, führt der neuartige Abregungsmechanismus - in der Fachsprache als "Interatomic Coulombic Decay" bezeichnet - dazu, dass ein niederenergetisches Elektron von einem der Nachbaratome des ursprünglich angeregten Atoms emittiert wird.


Die Wissenschaftler zeigten dies im Rahmen der Doktorarbeit von Till Jahnke an einem Neon Dimer, einem Paar durch eine Van-der-Waals-Bindung schwach zusammengehaltener Neonatome. Wird ein Elektron eines der beiden Neonatome entfernt, so wird die so entstandene Vakanz durch ein anderes Elektron des gleichen Atoms aufgefüllt. Die hierbei freiwerdende Energie ist allerdings nicht ausreichend, um ein weiteres Elektron aus diesem Atom zu lösen. Stattdessen wird die Energie über eine Entfernung von mehr als sechs Atomradien an einen Nachbarn weitergeben. Dies führt dazu, dass dieser Nachbar eines seiner Elektronen emittiert.

Die Arbeit ist soeben in den Physical Review Letters (Volume 93, Issue 16 vom 13.10.2004), der weltweit angesehensten physikalischen Fachzeitschrift (Herausgeber: Amerikanische Physikalische Gesellschaft), erschienen.

Diese Entdeckung könnte weitreichende Konsequenzen auch für die Chemie und Biologie haben, da der Effekt in Systemen, in denen Wasserstoffbindungen vorherrschen, vermutlich oft auftritt. Außerdem könnte es sich dabei um eine wichtige, bisher unbekannte Quelle für Niederenergie-Elektronen handeln, die - wie kürzlich bekannt wurde- mitverantwortlich für das Auftreten von DNA-Schäden sind. (http://www.aip.org/pnu/2003/split/636-1.html)

Nähere Informationen: Prof. Dr. Reinhard Dörner, Institut für Kernphysik, Telefon: 069/798-24218, Fax: 069/798-24212, E-Mail: doerner@hsb.uni-frankfurt.de sowie Till Jahnke, Institut für Kernphysik, Telefon: 069/798-24275, Fax: 069/798-24218, E-Mail: jahnke@hsb.uni-frankfurt.de

Dr. Monika Mölders | idw
Weitere Informationen:
http://hsb.uni-frankfurt.de/photoncluster/icd.html

Weitere Berichte zu: Elektron Kernphysik Neonatom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise