Antistress-Programm für Atome

Forscher der Universität Frankfurt zeigen, dass Atome überschüssige Energie an andere Atome weitergeben können

Atome können Stress an andere Atome weitergeben. Im Vergleich zu Atomen, die ihr Dasein alleine fristen, haben Atome, die in einer Flüssigkeit oder einem Cluster vorkommen, einen gleichermaßen effizienten wie erstaunlichen Weg entwickelt, überschüssige Energie los zu werden: Sie reichen diese einfach an ihren Nachbarn weiter. Dies belegen Experimente, die kürzlich eine von der Gruppe um Prof. Dr. Reinhard Dörner, Institut für Kernphysik der Universität Frankfurt, geführte Forscherkollaboration am Bessy Synchrotron (www.bessy.de) in Berlin herausgefunden hat.

Bereits 1997 hatte ein Forscherteam der Universität Heidelberg diesen Mechanismus postuliert (Cederbaum et al., Phys Rev. Lett, 15 Dec 1997), der nur dann auftritt, wenn Atome sich zu Gruppen zusammenschließen. Sobald ein angeregtes Teilchen sich in der Nähe von anderen Atomen befindet, führt der neuartige Abregungsmechanismus – in der Fachsprache als „Interatomic Coulombic Decay“ bezeichnet – dazu, dass ein niederenergetisches Elektron von einem der Nachbaratome des ursprünglich angeregten Atoms emittiert wird.

Die Wissenschaftler zeigten dies im Rahmen der Doktorarbeit von Till Jahnke an einem Neon Dimer, einem Paar durch eine Van-der-Waals-Bindung schwach zusammengehaltener Neonatome. Wird ein Elektron eines der beiden Neonatome entfernt, so wird die so entstandene Vakanz durch ein anderes Elektron des gleichen Atoms aufgefüllt. Die hierbei freiwerdende Energie ist allerdings nicht ausreichend, um ein weiteres Elektron aus diesem Atom zu lösen. Stattdessen wird die Energie über eine Entfernung von mehr als sechs Atomradien an einen Nachbarn weitergeben. Dies führt dazu, dass dieser Nachbar eines seiner Elektronen emittiert.

Die Arbeit ist soeben in den Physical Review Letters (Volume 93, Issue 16 vom 13.10.2004), der weltweit angesehensten physikalischen Fachzeitschrift (Herausgeber: Amerikanische Physikalische Gesellschaft), erschienen.

Diese Entdeckung könnte weitreichende Konsequenzen auch für die Chemie und Biologie haben, da der Effekt in Systemen, in denen Wasserstoffbindungen vorherrschen, vermutlich oft auftritt. Außerdem könnte es sich dabei um eine wichtige, bisher unbekannte Quelle für Niederenergie-Elektronen handeln, die – wie kürzlich bekannt wurde- mitverantwortlich für das Auftreten von DNA-Schäden sind. (http://www.aip.org/pnu/2003/split/636-1.html)

Nähere Informationen: Prof. Dr. Reinhard Dörner, Institut für Kernphysik, Telefon: 069/798-24218, Fax: 069/798-24212, E-Mail: doerner@hsb.uni-frankfurt.de sowie Till Jahnke, Institut für Kernphysik, Telefon: 069/798-24275, Fax: 069/798-24218, E-Mail: jahnke@hsb.uni-frankfurt.de

Media Contact

Dr. Monika Mölders idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer