Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supermagnete im All - Max-Planck-Astrophysiker haben Rätsel um magnetische Sterne im Universum gelöst

14.10.2004


Das Magnetfeld in einem magnetischen Stern, berechnet mit einer dreidimensionalen numerischen Simulation (links oben, Stereo-Paar). Es besteht aus einem Reifen verdrillter Feldlinien (blau dargestellt). Die durch die Oberfläche reichenden Feldlinien (rot) werden vom Reifen stabil zusammengehalten. Zur Verdeutlichung ist dies in schematischer Form im Bild rechts unten und im Schnitt durch den Stern (rechts oben) gezeigt. Diese Konfiguration wandert langsam auswärts unter Einfluss der endlichen Leitfähigkeit des Sterns, verformt sich dann wie die Naht auf einem Tennisball (links unten) und verschwindet danach.
Bild: Max-Planck-Institut für Astrophysik


Wie erklärt man die enormen Feldstärken von magnetischen Sterne? Diese seit 50 Jahren unbeantwortete Frage über die Entstehung kosmischer Magnetfelder haben Wissenschaftler des Max-Planck-Instituts für Astrophysik in Garching jetzt beantwortet. Mit Hilfe dreidimensionaler numerischer Simulationen ist es ihnen gelungen, eine Magnetfeldkonfiguration zu identifizieren, die die starken Magnetfelder auf der Oberfläche von so genannten A-Sternen und Weißen Zwergen zusammenhalten und über das gesamte Lebensalter eines Sterns aufrecht erhalten kann (Nature, 14. Oktober 2004). Damit wird die "fossile Feldtheorie" bestätigt, wonach es sich bei diesen Magnetfeldern um Überbleibsel aus jenen Gaswolken handelt, aus denen sich Sterne bilden.

... mehr zu:
»Gaswolke »Supermagnet

Diese Entdeckung ist von Bedeutung für drei Gruppen von Sternen, in denen man ein starkes Magnetfeld beobachten kann. Die bekanntesten sind die so genannten "magnetischen Ap-Sterne", ziemlich normale Sterne, die zwei bis zehn Mal schwerer sind als unsere Sonne und die ein Magnetfeld haben wie ein Stabmagnet. Ein Beispiel ist Alioth (Epsilon Ursae Majoris, der fünfte Stern im großen Bären). Daneben gibt es unter den so genannten Weißen Zwergen auch magnetische Exemplare mit 100.000 mal höheren Feldstärken, und schließlich kennt man die "Magnetare", Neutronensterne mit 100 Milliarden mal stärkeren Felder als handelsübliche Stabmagnete. Das Feld in all diesen Sternen ist großskalig und statisch, im Gegensatz zur Sonne und ihr verwandten Sternen, deren Magnetfeld schwach und kleinskalig ist und sich zudem fortlaufend ändert.

Seit der Entdeckung magnetischer Sterne vor mehr als einem halben Jahrhundert gibt es zwei Theorien, um ihr Magnetfeld zu erklären: Nach der einen Theorie wird das Feld durch Konvektion im Kern erzeugt, ähnlich wie das Magnetfeld der Erde. Die andere ist die "fossile Feld-Theorie", wonach diese Felder schlicht Überbleibsel sind von Magnetfeldern in den Gaswolken, aus denen Sterne entstanden sind. Für diese Erklärung gibt es indirekte Evidenzen, wie die Tatsache, dass die Magnetfelder unveränderlich sind. Doch das Hauptproblem besteht darin, dass man bisher keine Feldkonfiguration kannte, die so lange Zeit überleben kann. Alle bisher untersuchten Magnetfeldkonfigurationen sind instabil und würden bereits innerhalb weniger Jahre zerfallen.


Von daher vermutete man, dass es zum einen eine stabile Konfiguration für das Magnetfeld geben muss, und dass es zum anderen einen Weg geben müsste, auf dem sich das anfängliche Magnetfeld des Sterns dorthin entwickeln kann. Diese spezifische Konfiguration haben die Max-Planck-Forscher jetzt mit dreidimensionalen numerischen Simulationen gefunden, in denen die Entwicklung willkürlicher Anfangsfelder bis zu einem stabilen Endzustand verfolgt wird.

Dieses stabile Magnetfeld hat immer die gleiche Form - ein Reifen (Torus) aus verdrillten Feldlinien, vergleichbar jenen Feldern, die in modernen Fusionsreaktoren verwendet werden. Das Feld ähnelt einem defekten Autoreifen, bei dem die gebrochenen Drähte des Stahldrahtgeflechts durch die Oberfläche schauen. An der Oberfläche eines Sterns hat das Magnetfeld etwa die Form eines Dipols, was auch mit astronomischen Beobachtungen übereinstimmt.

Mit ihren Computersimulationen haben die Max-Planck-Wissenschaftler jetzt eine zuverlässige Basis für die Theorie der Magnetfelder in A-Sternen geschaffen: Bei diesen Feldern handelt es sich um Überbleibsel von Magnetfeldern, die in den galaktischen Gaswolken bestanden haben, aus denen der Stern geboren wurde. Die Forscher können jetzt auch erklären, wie diese Felder über Hunderte Millionen Jahre überleben können. Damit wird auch wahrscheinlich, dass Magnetfelder in Weißen Zwergen und Neutronensternen die gleiche Struktur und Stabilität besitzen.

Originalveröffentlichung:

J. Braithwaite, H. Spruit
A fossil origin for the magnetic field in A stars and white dwarfs
Nature, 431, 819 -821, 14 October 2004

Weitere Informationen erhalten Sie von:

Dr. Hendrik Spruit
Max-Planck-Institut für Astrophysik, Garching
Tel.: 089 3299-3220, Fax: -3235
E-Mail: henk@mpg-garching.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg-garching.mpg.de

Weitere Berichte zu: Gaswolke Supermagnet

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016 | Biowissenschaften Chemie

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie