Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supermagnete im All - Max-Planck-Astrophysiker haben Rätsel um magnetische Sterne im Universum gelöst

14.10.2004


Das Magnetfeld in einem magnetischen Stern, berechnet mit einer dreidimensionalen numerischen Simulation (links oben, Stereo-Paar). Es besteht aus einem Reifen verdrillter Feldlinien (blau dargestellt). Die durch die Oberfläche reichenden Feldlinien (rot) werden vom Reifen stabil zusammengehalten. Zur Verdeutlichung ist dies in schematischer Form im Bild rechts unten und im Schnitt durch den Stern (rechts oben) gezeigt. Diese Konfiguration wandert langsam auswärts unter Einfluss der endlichen Leitfähigkeit des Sterns, verformt sich dann wie die Naht auf einem Tennisball (links unten) und verschwindet danach.
Bild: Max-Planck-Institut für Astrophysik


Wie erklärt man die enormen Feldstärken von magnetischen Sterne? Diese seit 50 Jahren unbeantwortete Frage über die Entstehung kosmischer Magnetfelder haben Wissenschaftler des Max-Planck-Instituts für Astrophysik in Garching jetzt beantwortet. Mit Hilfe dreidimensionaler numerischer Simulationen ist es ihnen gelungen, eine Magnetfeldkonfiguration zu identifizieren, die die starken Magnetfelder auf der Oberfläche von so genannten A-Sternen und Weißen Zwergen zusammenhalten und über das gesamte Lebensalter eines Sterns aufrecht erhalten kann (Nature, 14. Oktober 2004). Damit wird die "fossile Feldtheorie" bestätigt, wonach es sich bei diesen Magnetfeldern um Überbleibsel aus jenen Gaswolken handelt, aus denen sich Sterne bilden.

... mehr zu:
»Gaswolke »Supermagnet

Diese Entdeckung ist von Bedeutung für drei Gruppen von Sternen, in denen man ein starkes Magnetfeld beobachten kann. Die bekanntesten sind die so genannten "magnetischen Ap-Sterne", ziemlich normale Sterne, die zwei bis zehn Mal schwerer sind als unsere Sonne und die ein Magnetfeld haben wie ein Stabmagnet. Ein Beispiel ist Alioth (Epsilon Ursae Majoris, der fünfte Stern im großen Bären). Daneben gibt es unter den so genannten Weißen Zwergen auch magnetische Exemplare mit 100.000 mal höheren Feldstärken, und schließlich kennt man die "Magnetare", Neutronensterne mit 100 Milliarden mal stärkeren Felder als handelsübliche Stabmagnete. Das Feld in all diesen Sternen ist großskalig und statisch, im Gegensatz zur Sonne und ihr verwandten Sternen, deren Magnetfeld schwach und kleinskalig ist und sich zudem fortlaufend ändert.

Seit der Entdeckung magnetischer Sterne vor mehr als einem halben Jahrhundert gibt es zwei Theorien, um ihr Magnetfeld zu erklären: Nach der einen Theorie wird das Feld durch Konvektion im Kern erzeugt, ähnlich wie das Magnetfeld der Erde. Die andere ist die "fossile Feld-Theorie", wonach diese Felder schlicht Überbleibsel sind von Magnetfeldern in den Gaswolken, aus denen Sterne entstanden sind. Für diese Erklärung gibt es indirekte Evidenzen, wie die Tatsache, dass die Magnetfelder unveränderlich sind. Doch das Hauptproblem besteht darin, dass man bisher keine Feldkonfiguration kannte, die so lange Zeit überleben kann. Alle bisher untersuchten Magnetfeldkonfigurationen sind instabil und würden bereits innerhalb weniger Jahre zerfallen.


Von daher vermutete man, dass es zum einen eine stabile Konfiguration für das Magnetfeld geben muss, und dass es zum anderen einen Weg geben müsste, auf dem sich das anfängliche Magnetfeld des Sterns dorthin entwickeln kann. Diese spezifische Konfiguration haben die Max-Planck-Forscher jetzt mit dreidimensionalen numerischen Simulationen gefunden, in denen die Entwicklung willkürlicher Anfangsfelder bis zu einem stabilen Endzustand verfolgt wird.

Dieses stabile Magnetfeld hat immer die gleiche Form - ein Reifen (Torus) aus verdrillten Feldlinien, vergleichbar jenen Feldern, die in modernen Fusionsreaktoren verwendet werden. Das Feld ähnelt einem defekten Autoreifen, bei dem die gebrochenen Drähte des Stahldrahtgeflechts durch die Oberfläche schauen. An der Oberfläche eines Sterns hat das Magnetfeld etwa die Form eines Dipols, was auch mit astronomischen Beobachtungen übereinstimmt.

Mit ihren Computersimulationen haben die Max-Planck-Wissenschaftler jetzt eine zuverlässige Basis für die Theorie der Magnetfelder in A-Sternen geschaffen: Bei diesen Feldern handelt es sich um Überbleibsel von Magnetfeldern, die in den galaktischen Gaswolken bestanden haben, aus denen der Stern geboren wurde. Die Forscher können jetzt auch erklären, wie diese Felder über Hunderte Millionen Jahre überleben können. Damit wird auch wahrscheinlich, dass Magnetfelder in Weißen Zwergen und Neutronensternen die gleiche Struktur und Stabilität besitzen.

Originalveröffentlichung:

J. Braithwaite, H. Spruit
A fossil origin for the magnetic field in A stars and white dwarfs
Nature, 431, 819 -821, 14 October 2004

Weitere Informationen erhalten Sie von:

Dr. Hendrik Spruit
Max-Planck-Institut für Astrophysik, Garching
Tel.: 089 3299-3220, Fax: -3235
E-Mail: henk@mpg-garching.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg-garching.mpg.de

Weitere Berichte zu: Gaswolke Supermagnet

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise