Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supermagnete im All - Max-Planck-Astrophysiker haben Rätsel um magnetische Sterne im Universum gelöst

14.10.2004


Das Magnetfeld in einem magnetischen Stern, berechnet mit einer dreidimensionalen numerischen Simulation (links oben, Stereo-Paar). Es besteht aus einem Reifen verdrillter Feldlinien (blau dargestellt). Die durch die Oberfläche reichenden Feldlinien (rot) werden vom Reifen stabil zusammengehalten. Zur Verdeutlichung ist dies in schematischer Form im Bild rechts unten und im Schnitt durch den Stern (rechts oben) gezeigt. Diese Konfiguration wandert langsam auswärts unter Einfluss der endlichen Leitfähigkeit des Sterns, verformt sich dann wie die Naht auf einem Tennisball (links unten) und verschwindet danach.
Bild: Max-Planck-Institut für Astrophysik


Wie erklärt man die enormen Feldstärken von magnetischen Sterne? Diese seit 50 Jahren unbeantwortete Frage über die Entstehung kosmischer Magnetfelder haben Wissenschaftler des Max-Planck-Instituts für Astrophysik in Garching jetzt beantwortet. Mit Hilfe dreidimensionaler numerischer Simulationen ist es ihnen gelungen, eine Magnetfeldkonfiguration zu identifizieren, die die starken Magnetfelder auf der Oberfläche von so genannten A-Sternen und Weißen Zwergen zusammenhalten und über das gesamte Lebensalter eines Sterns aufrecht erhalten kann (Nature, 14. Oktober 2004). Damit wird die "fossile Feldtheorie" bestätigt, wonach es sich bei diesen Magnetfeldern um Überbleibsel aus jenen Gaswolken handelt, aus denen sich Sterne bilden.

... mehr zu:
»Gaswolke »Supermagnet

Diese Entdeckung ist von Bedeutung für drei Gruppen von Sternen, in denen man ein starkes Magnetfeld beobachten kann. Die bekanntesten sind die so genannten "magnetischen Ap-Sterne", ziemlich normale Sterne, die zwei bis zehn Mal schwerer sind als unsere Sonne und die ein Magnetfeld haben wie ein Stabmagnet. Ein Beispiel ist Alioth (Epsilon Ursae Majoris, der fünfte Stern im großen Bären). Daneben gibt es unter den so genannten Weißen Zwergen auch magnetische Exemplare mit 100.000 mal höheren Feldstärken, und schließlich kennt man die "Magnetare", Neutronensterne mit 100 Milliarden mal stärkeren Felder als handelsübliche Stabmagnete. Das Feld in all diesen Sternen ist großskalig und statisch, im Gegensatz zur Sonne und ihr verwandten Sternen, deren Magnetfeld schwach und kleinskalig ist und sich zudem fortlaufend ändert.

Seit der Entdeckung magnetischer Sterne vor mehr als einem halben Jahrhundert gibt es zwei Theorien, um ihr Magnetfeld zu erklären: Nach der einen Theorie wird das Feld durch Konvektion im Kern erzeugt, ähnlich wie das Magnetfeld der Erde. Die andere ist die "fossile Feld-Theorie", wonach diese Felder schlicht Überbleibsel sind von Magnetfeldern in den Gaswolken, aus denen Sterne entstanden sind. Für diese Erklärung gibt es indirekte Evidenzen, wie die Tatsache, dass die Magnetfelder unveränderlich sind. Doch das Hauptproblem besteht darin, dass man bisher keine Feldkonfiguration kannte, die so lange Zeit überleben kann. Alle bisher untersuchten Magnetfeldkonfigurationen sind instabil und würden bereits innerhalb weniger Jahre zerfallen.


Von daher vermutete man, dass es zum einen eine stabile Konfiguration für das Magnetfeld geben muss, und dass es zum anderen einen Weg geben müsste, auf dem sich das anfängliche Magnetfeld des Sterns dorthin entwickeln kann. Diese spezifische Konfiguration haben die Max-Planck-Forscher jetzt mit dreidimensionalen numerischen Simulationen gefunden, in denen die Entwicklung willkürlicher Anfangsfelder bis zu einem stabilen Endzustand verfolgt wird.

Dieses stabile Magnetfeld hat immer die gleiche Form - ein Reifen (Torus) aus verdrillten Feldlinien, vergleichbar jenen Feldern, die in modernen Fusionsreaktoren verwendet werden. Das Feld ähnelt einem defekten Autoreifen, bei dem die gebrochenen Drähte des Stahldrahtgeflechts durch die Oberfläche schauen. An der Oberfläche eines Sterns hat das Magnetfeld etwa die Form eines Dipols, was auch mit astronomischen Beobachtungen übereinstimmt.

Mit ihren Computersimulationen haben die Max-Planck-Wissenschaftler jetzt eine zuverlässige Basis für die Theorie der Magnetfelder in A-Sternen geschaffen: Bei diesen Feldern handelt es sich um Überbleibsel von Magnetfeldern, die in den galaktischen Gaswolken bestanden haben, aus denen der Stern geboren wurde. Die Forscher können jetzt auch erklären, wie diese Felder über Hunderte Millionen Jahre überleben können. Damit wird auch wahrscheinlich, dass Magnetfelder in Weißen Zwergen und Neutronensternen die gleiche Struktur und Stabilität besitzen.

Originalveröffentlichung:

J. Braithwaite, H. Spruit
A fossil origin for the magnetic field in A stars and white dwarfs
Nature, 431, 819 -821, 14 October 2004

Weitere Informationen erhalten Sie von:

Dr. Hendrik Spruit
Max-Planck-Institut für Astrophysik, Garching
Tel.: 089 3299-3220, Fax: -3235
E-Mail: henk@mpg-garching.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg-garching.mpg.de

Weitere Berichte zu: Gaswolke Supermagnet

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie