Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Moleküle in Form gebracht werden

13.10.2004


Chemnitzer Physiker beobachten Elektronen bei ihrer Reise durch Moleküle und machen erstmals Elektronenzustände einzelner organischer Moleküle direkt sichtbar



Auf der Suche nach neuen Werkstoffen, Arzneimitteln oder elektronischen Anwendungen ist Physikern der TU Chemnitz in nanometerkleinen Welten ein wichtiger Durchbruch gelungen: Mit Hilfe eines Raster-Tunnel-Mikroskops haben Nachwuchswissenschaftler an der Professur für Analytik an Festkörperoberflächen erstmals Elektronen bei ihrer Reise durch ein organisches Molekül beobachtet. Damit ist es zugleich gelungen, die Struktur des Moleküls aus seinem Inneren heraus sichtbar zu machen.



Was bisher nur quantenmechanisch am Computer berechnet werden konnte, haben die Chemnitzer Physiker am Beispiel von Naphthalocyanin-Molekülen mit Erfolg experimentell unter die Lupe genommen. Und ihre Erkenntnis lautet: Von den jeweiligen Elektronenzuständen hängt ab, in welcher Form sich diese an vierblättrige Kleeblätter erinnernden Moleküle dem Beobachter präsentieren. So sind die zwei Nanometer, also nur zwei Millionstel Millimeter großen Moleküle entweder als kompakte vierzackige Sterne oder aber als bizarre Ringe auf einem Graphitkristall zu sehen. "Tunneln die Elektronen in den energetisch tieferen Elektronenzustand des Moleküls, lässt sich eine Ringform beobachten, tunneln sie in den energetisch höheren Zustand, sehen wir eine kompakte Form", erläutert Prof. Dr. Michael Hietschold, der an der TU die Professur für Analytik an Festkörperoberflächen innehat.

"Die Ermittlung der Elektronenzustände ist entscheidend, um die chemischen Eigenschaften der Moleküle in Zukunft besser zu verstehen", so Prof. Hietschold. Nach seiner Einschätzung sei damit ein wichtiger Schritt gemacht zum Aufbau völlig neuartiger atomarer und molekularer Strukturen. Dabei würden die Aufgabenstellungen der traditionellen Wissenschaftsgebiete Physik und Chemie nahezu vollständig miteinander verschmelzen. Was heute noch Grundlagenforschung in unvorstellbar kleinen Experimentierfeldern ist, könnte bald für viele Lebensbereiche an praktischer Bedeutung gewinnen - etwa für winzigste Bauteile und Apparate oder für die Miniaturproduktion von Stoffen mit genau vorhersagbaren Eigenschaften. Prof. Hietschold: "Und weil dabei nur wenige Moleküle benötigt werden, wäre dies alles mit einem minimalen Aufwand an Energie und Rohstoffen realisierbar."

Durchgeführt wurden die aktuellen Untersuchungen vom indischen Promotionsstudenten Thiruvacheril Gopakumar in dem an der TU Chemnitz eingerichteten Graduiertenkolleg "Akkumulation von einzelnen Molekülen zu Nanostrukturen" der Deutschen Forschungsgemeinschaft.

Weitere Informationen gibt Prof. Dr. Michael Hietschold, Inhaber der Professur Analytik an Festkörperoberflächen der TU Chemnitz, unter Telefon (03 71) 531 31 23 oder per E-Mail hietschold@physik.tu-chemnitz.de.

Mario Steinebach | idw
Weitere Informationen:
http://www.tu-chemnitz.de

Weitere Berichte zu: Analytik Festkörperoberfläche Molekül Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Breitbandlichtquellen mit flüssigem Kern
25.07.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schreiben mit dem Elektronenstrahl: Jetzt auch Nanostrukturen aus Silber
24.07.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Breitbandlichtquellen mit flüssigem Kern

25.07.2017 | Physik Astronomie

Symbiose - Fettversorgung für Pilze

25.07.2017 | Biowissenschaften Chemie

Europas demografische Zukunft

25.07.2017 | Studien Analysen