Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Physiker bauen einen Speicher für Quanteninformation

07.10.2004


Physikern der Universität Bonn ist ein entscheidender Schritt auf dem Weg zur Quanteninformationsverarbeitung mit neutralen Atomen gelungen: In der aktuellen Ausgabe der "Physical Review Letters" 93 (2004) berichten sie über die experimentelle Realisierung eines Quantenregisters.



Als nächstes wollen die Wissenschaftler nun ein Quantengatter konstruieren, in dem zwei oder mehrere Atome kontrolliert miteinander wechselwirken. Mit einer Kombination aus Register und Gatter stünden dann alle Grundbausteine für die Entwicklung eines Quantencomputers mit neutralen Atomen zur Verfügung.

... mehr zu:
»Atom »Quanteninformation »Qubit »Register


Ein Register ist der zentrale Arbeitsspeicher eines Computers. Es besteht aus einer Reihe von elementaren Informationszellen, die jeweils ein Bit an Information, das heißt eine logische Null oder eine Eins, aufnehmen können. In einem Register von acht Bit Länge lässt sich so beispielsweise eine Zahl zwischen 0 und 255 speichern - die 255 entspricht einer Reihe von acht Bits im Zustand 1. Um zwei Zahlen zu addieren, benötigt man in der Regel drei Register: Zwei für die beiden Summanden und ein weiteres für das Resultat.

"Wir verwenden für unsere Register neutrale Atome", erklärt Dominik Schrader vom Bonner Institut für Angewandte Physik. Ein Atom ist ein mikroskopisches Quantensystem und kann daher Quanteninformation speichern. In Anlehnung an das ’Bit’ nennt man es deshalb auch ’Qubit’. Qubits können neben den klassischen Informationszuständen Null und Eins auch beliebige Zwischenzustände, so genannte quantenmechanische Überlagerungszustände, annehmen.

Schrader hat das Register zusammen mit Dr. Arno Rauschenbeutel in der Arbeitsgruppe von Professor Dr. Dieter Meschede gebaut. Die Physiker bremsten in ihrem Experiment zunächst Caesium-Atome so weit ab, dass sie sich fast nicht mehr bewegten. Fünf dieser "kühlen" Atome luden sie dann auf einen Laserstrahl, eine stehende Lichtwelle aus vielen Bergen und Tälern - vergleichbar vielleicht mit einem Stück Wellpappe. In ihren Wellentälern "eingesperrt", blieben die Atome so stationär fixiert, was die Forscher mit einer hochempfindlichen Digitalkamera kontrollieren konnten.

Mit Hilfe eines weiteren Lasers initialisierten die Forscher dann das Quantenregister, sprich: Sie "beschrieben" alle Qubits mit Nullen. "Anschließend konnten wir dann mittels Mikrowellenstrahlung in jedem Qubit die gewünschte Quanteninformation speichern", so Schrader. Um die Qubits gezielt einzeln manipulieren zu können, erzeugten die Physiker um ihr Register ein ortsabhängiges Magnetfeld. "Je nach lokaler Stärke des Magnetfeldes reagieren die Qubits nur auf Mikrowellenstrahlung von einer ganz bestimmten Frequenz. Durch Variation der Mikrowellenstrahlung konnten wir daher ganz gezielt nur die gewünschten Qubits beschreiben." Die Auflösung dieser Adressiertechnik beträgt etwa zwei Tausendstel Millimeter - auf einer Länge von einem Millimeter ließen sich also mehrere hundert Qubits unterbringen.

Um zu kontrollieren, ob das Register tatsächlich die gewünschte Information gespeichert hatte, beschossen die Forscher die Atomkette mit Laserlicht, das nur mit Qubits im Zustand 0 wechselwirkt. Die Laser-Photonen schossen diese 0-Atome von dem Trägerstrahl, ließen die 1-Atome aber unberührt. Im Kamerabild waren danach nur noch die mit einer "1" beschriebenen Atome sichtbar.

Im nächsten Schritt versuchen die Physiker nun, ein Quantengatter zu realisieren, in dem zwei oder mehr Qubits des Registers kontrolliert miteinander wechselwirken. "Wir hoffen, in zwei Jahren so weit zu sein", so Dominik Schrader. "Allerdings stößt man in diesem Bereich immer wieder auf Schwierigkeiten, mit denen man vorher nicht gerechnet hätte." Dementsprechend vorsichtig fällt auch seine Prognose aus, wann der erste "Quantencomputer" seinen Dienst aufnehmen wird, der seinen Namen wirklich verdient. Der hätte dann aber wahrscheinlich Fähigkeiten, gegen die herkömmliche Rechner ziemlich blass aussehen würden - beispielsweise bei der Faktorisierung großer Zahlen, bei der heutige Computer recht schnell an ihre Grenzen stoßen.

Ansprechpartner:

Dominik Schrader
Institut für Angewandte Physik der Universität Bonn
Telefon: +49-(0) 228-73/3483 und -3480
Fax: +49-(0) 228/73-3474
E-Mail: d.schrader@gmx.com

Professor Dr. Dieter Meschede
Telefon: +49-(0) 228/73-3478
E-Mail: meschede@iap.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Atom Quanteninformation Qubit Register

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise