Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Physiker bauen einen Speicher für Quanteninformation

07.10.2004


Physikern der Universität Bonn ist ein entscheidender Schritt auf dem Weg zur Quanteninformationsverarbeitung mit neutralen Atomen gelungen: In der aktuellen Ausgabe der "Physical Review Letters" 93 (2004) berichten sie über die experimentelle Realisierung eines Quantenregisters.



Als nächstes wollen die Wissenschaftler nun ein Quantengatter konstruieren, in dem zwei oder mehrere Atome kontrolliert miteinander wechselwirken. Mit einer Kombination aus Register und Gatter stünden dann alle Grundbausteine für die Entwicklung eines Quantencomputers mit neutralen Atomen zur Verfügung.

... mehr zu:
»Atom »Quanteninformation »Qubit »Register


Ein Register ist der zentrale Arbeitsspeicher eines Computers. Es besteht aus einer Reihe von elementaren Informationszellen, die jeweils ein Bit an Information, das heißt eine logische Null oder eine Eins, aufnehmen können. In einem Register von acht Bit Länge lässt sich so beispielsweise eine Zahl zwischen 0 und 255 speichern - die 255 entspricht einer Reihe von acht Bits im Zustand 1. Um zwei Zahlen zu addieren, benötigt man in der Regel drei Register: Zwei für die beiden Summanden und ein weiteres für das Resultat.

"Wir verwenden für unsere Register neutrale Atome", erklärt Dominik Schrader vom Bonner Institut für Angewandte Physik. Ein Atom ist ein mikroskopisches Quantensystem und kann daher Quanteninformation speichern. In Anlehnung an das ’Bit’ nennt man es deshalb auch ’Qubit’. Qubits können neben den klassischen Informationszuständen Null und Eins auch beliebige Zwischenzustände, so genannte quantenmechanische Überlagerungszustände, annehmen.

Schrader hat das Register zusammen mit Dr. Arno Rauschenbeutel in der Arbeitsgruppe von Professor Dr. Dieter Meschede gebaut. Die Physiker bremsten in ihrem Experiment zunächst Caesium-Atome so weit ab, dass sie sich fast nicht mehr bewegten. Fünf dieser "kühlen" Atome luden sie dann auf einen Laserstrahl, eine stehende Lichtwelle aus vielen Bergen und Tälern - vergleichbar vielleicht mit einem Stück Wellpappe. In ihren Wellentälern "eingesperrt", blieben die Atome so stationär fixiert, was die Forscher mit einer hochempfindlichen Digitalkamera kontrollieren konnten.

Mit Hilfe eines weiteren Lasers initialisierten die Forscher dann das Quantenregister, sprich: Sie "beschrieben" alle Qubits mit Nullen. "Anschließend konnten wir dann mittels Mikrowellenstrahlung in jedem Qubit die gewünschte Quanteninformation speichern", so Schrader. Um die Qubits gezielt einzeln manipulieren zu können, erzeugten die Physiker um ihr Register ein ortsabhängiges Magnetfeld. "Je nach lokaler Stärke des Magnetfeldes reagieren die Qubits nur auf Mikrowellenstrahlung von einer ganz bestimmten Frequenz. Durch Variation der Mikrowellenstrahlung konnten wir daher ganz gezielt nur die gewünschten Qubits beschreiben." Die Auflösung dieser Adressiertechnik beträgt etwa zwei Tausendstel Millimeter - auf einer Länge von einem Millimeter ließen sich also mehrere hundert Qubits unterbringen.

Um zu kontrollieren, ob das Register tatsächlich die gewünschte Information gespeichert hatte, beschossen die Forscher die Atomkette mit Laserlicht, das nur mit Qubits im Zustand 0 wechselwirkt. Die Laser-Photonen schossen diese 0-Atome von dem Trägerstrahl, ließen die 1-Atome aber unberührt. Im Kamerabild waren danach nur noch die mit einer "1" beschriebenen Atome sichtbar.

Im nächsten Schritt versuchen die Physiker nun, ein Quantengatter zu realisieren, in dem zwei oder mehr Qubits des Registers kontrolliert miteinander wechselwirken. "Wir hoffen, in zwei Jahren so weit zu sein", so Dominik Schrader. "Allerdings stößt man in diesem Bereich immer wieder auf Schwierigkeiten, mit denen man vorher nicht gerechnet hätte." Dementsprechend vorsichtig fällt auch seine Prognose aus, wann der erste "Quantencomputer" seinen Dienst aufnehmen wird, der seinen Namen wirklich verdient. Der hätte dann aber wahrscheinlich Fähigkeiten, gegen die herkömmliche Rechner ziemlich blass aussehen würden - beispielsweise bei der Faktorisierung großer Zahlen, bei der heutige Computer recht schnell an ihre Grenzen stoßen.

Ansprechpartner:

Dominik Schrader
Institut für Angewandte Physik der Universität Bonn
Telefon: +49-(0) 228-73/3483 und -3480
Fax: +49-(0) 228/73-3474
E-Mail: d.schrader@gmx.com

Professor Dr. Dieter Meschede
Telefon: +49-(0) 228/73-3478
E-Mail: meschede@iap.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Atom Quanteninformation Qubit Register

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik