Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Physiker bauen einen Speicher für Quanteninformation

07.10.2004


Physikern der Universität Bonn ist ein entscheidender Schritt auf dem Weg zur Quanteninformationsverarbeitung mit neutralen Atomen gelungen: In der aktuellen Ausgabe der "Physical Review Letters" 93 (2004) berichten sie über die experimentelle Realisierung eines Quantenregisters.



Als nächstes wollen die Wissenschaftler nun ein Quantengatter konstruieren, in dem zwei oder mehrere Atome kontrolliert miteinander wechselwirken. Mit einer Kombination aus Register und Gatter stünden dann alle Grundbausteine für die Entwicklung eines Quantencomputers mit neutralen Atomen zur Verfügung.

... mehr zu:
»Atom »Quanteninformation »Qubit »Register


Ein Register ist der zentrale Arbeitsspeicher eines Computers. Es besteht aus einer Reihe von elementaren Informationszellen, die jeweils ein Bit an Information, das heißt eine logische Null oder eine Eins, aufnehmen können. In einem Register von acht Bit Länge lässt sich so beispielsweise eine Zahl zwischen 0 und 255 speichern - die 255 entspricht einer Reihe von acht Bits im Zustand 1. Um zwei Zahlen zu addieren, benötigt man in der Regel drei Register: Zwei für die beiden Summanden und ein weiteres für das Resultat.

"Wir verwenden für unsere Register neutrale Atome", erklärt Dominik Schrader vom Bonner Institut für Angewandte Physik. Ein Atom ist ein mikroskopisches Quantensystem und kann daher Quanteninformation speichern. In Anlehnung an das ’Bit’ nennt man es deshalb auch ’Qubit’. Qubits können neben den klassischen Informationszuständen Null und Eins auch beliebige Zwischenzustände, so genannte quantenmechanische Überlagerungszustände, annehmen.

Schrader hat das Register zusammen mit Dr. Arno Rauschenbeutel in der Arbeitsgruppe von Professor Dr. Dieter Meschede gebaut. Die Physiker bremsten in ihrem Experiment zunächst Caesium-Atome so weit ab, dass sie sich fast nicht mehr bewegten. Fünf dieser "kühlen" Atome luden sie dann auf einen Laserstrahl, eine stehende Lichtwelle aus vielen Bergen und Tälern - vergleichbar vielleicht mit einem Stück Wellpappe. In ihren Wellentälern "eingesperrt", blieben die Atome so stationär fixiert, was die Forscher mit einer hochempfindlichen Digitalkamera kontrollieren konnten.

Mit Hilfe eines weiteren Lasers initialisierten die Forscher dann das Quantenregister, sprich: Sie "beschrieben" alle Qubits mit Nullen. "Anschließend konnten wir dann mittels Mikrowellenstrahlung in jedem Qubit die gewünschte Quanteninformation speichern", so Schrader. Um die Qubits gezielt einzeln manipulieren zu können, erzeugten die Physiker um ihr Register ein ortsabhängiges Magnetfeld. "Je nach lokaler Stärke des Magnetfeldes reagieren die Qubits nur auf Mikrowellenstrahlung von einer ganz bestimmten Frequenz. Durch Variation der Mikrowellenstrahlung konnten wir daher ganz gezielt nur die gewünschten Qubits beschreiben." Die Auflösung dieser Adressiertechnik beträgt etwa zwei Tausendstel Millimeter - auf einer Länge von einem Millimeter ließen sich also mehrere hundert Qubits unterbringen.

Um zu kontrollieren, ob das Register tatsächlich die gewünschte Information gespeichert hatte, beschossen die Forscher die Atomkette mit Laserlicht, das nur mit Qubits im Zustand 0 wechselwirkt. Die Laser-Photonen schossen diese 0-Atome von dem Trägerstrahl, ließen die 1-Atome aber unberührt. Im Kamerabild waren danach nur noch die mit einer "1" beschriebenen Atome sichtbar.

Im nächsten Schritt versuchen die Physiker nun, ein Quantengatter zu realisieren, in dem zwei oder mehr Qubits des Registers kontrolliert miteinander wechselwirken. "Wir hoffen, in zwei Jahren so weit zu sein", so Dominik Schrader. "Allerdings stößt man in diesem Bereich immer wieder auf Schwierigkeiten, mit denen man vorher nicht gerechnet hätte." Dementsprechend vorsichtig fällt auch seine Prognose aus, wann der erste "Quantencomputer" seinen Dienst aufnehmen wird, der seinen Namen wirklich verdient. Der hätte dann aber wahrscheinlich Fähigkeiten, gegen die herkömmliche Rechner ziemlich blass aussehen würden - beispielsweise bei der Faktorisierung großer Zahlen, bei der heutige Computer recht schnell an ihre Grenzen stoßen.

Ansprechpartner:

Dominik Schrader
Institut für Angewandte Physik der Universität Bonn
Telefon: +49-(0) 228-73/3483 und -3480
Fax: +49-(0) 228/73-3474
E-Mail: d.schrader@gmx.com

Professor Dr. Dieter Meschede
Telefon: +49-(0) 228/73-3478
E-Mail: meschede@iap.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Atom Quanteninformation Qubit Register

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie