Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomare Defekte bestimmen das Schwingungsverhalten von Kohlenstoff-Nanoröhren

28.09.2004


Schematische Darstellung einer Kohlenstoff-Nanoröhre unter der Spitze eines Rastertunnelmikroskops. Die Spitze wird entlang der Röhrchenachse bewegt und bestimmt mit atomarer Auflösung die Schwingungsmoden an verschiedenen Orten. An Defekten - hier an einer Stelle, wo sich der Durchmesser des Röhrchens ändert -, verändert sich das Schwingungsverhalten drastisch.

Bild: Max-Planck-Institut für Festkörperforschung


Es war schon immer ein Traum der Forscher, die Schwingungsmoden von molekularen Ketten am Ort eines speziellen Atoms untersuchen zu können. Jetzt ist es einem Forscherteam am Max-Planck-Institut für Festkörperforschung mit Hilfe eines Rastertunnelmikroskops erstmals gelungen, die Schwingungsmoden von Kohlenstoff-Nanoröhren mit höchster, also atomarer Auflösung zu messen. Dabei stellten die Wissenschaftler fest, dass die Nanoröhren in der Nähe von atomaren Defekten lokal geänderte elektronische und mechanische Eigenschaften zeigen, die weitreichende Konsequenzen für ihr Verhalten als Ganzes haben (Physical Review Letters, 24. September 2004).


Seit ihrer Entdeckung im Jahre 1991 beschäftigen Kohlenstoff-Nanoröhren die Fantasie von Forschern und Ingenieuren durch ihre vielversprechenden Eigenschaften. Diese Objekte der Nanowelt, die aus aufgerollten Graphitschichten bestehen und Durchmesser von einem Nanometer - 10.000 mal kleiner als ein menschliches Haar - haben, sollen als molekulare Komponenten in zukünftigen, Nanometer-großen Bauelementen eingesetzt werden. Die einzigartigen elektrischen Eigenschaften dieser Nanodrähte, die je nach atomarem Aufbau metallisch oder halbleitend sein können, ermöglichen die Entwicklung kleinster Bauelemente wie Nanotransistoren, Gassensoren, Superkondensatoren, Flachbildschirme, usw.

Daneben besitzen die Kohlenstoff-Nanoröhren aber auch außergewöhnliche mechanische Eigenschaften: Da die Kohlenstoff-Kohlenstoff-Bindung eine der stärksten in der Natur ist, sind die Nanoröhren entlang ihrer Achse etwa fünf Mal härter als Stahl. Andererseits sind sie auch flexibel und überstehen extreme Verbiegungen und Torsionen unbeschadet. Komposit-Materialien, die mit Kohlenstoff-Nanoröhren verstärkt sind, könnten in der Zukunft andere Materialien ersetzen und auf diese Weise dort für große Gewichtseinsparung sorgen, wo hohe Festigkeit erforderlich ist, wie im Fahrzeugbau und in der Luft- und Raumfahrt.


Diese einzigartigen elektronischen und mechanischen Eigenschaften hängen jedoch sehr davon ab, ob die Nanoröhren nach einem perfekten atomaren Bauplan aufgebaut sind. Genauso wie der Ton einer Violinensaite von der Stärke des Saitenmaterials abhängt und durch Beschädigungen gestört wird, zeigen die Schwingungen eines Kohlenstoffröhrchens an, ob seine mechanischen Eigenschaften durch Defekte (z.B. fehlende oder zusätzliche Atome oder Bindungen) beeinträchtigt sind und die Nanoröhre daher "weicher" geworden ist. Um unser Wissen über den Einfluss der Defekte auf die mechanischen Eigenschaften zu erweitern, ist es folglich extrem wichtig, die Schwingungsmoden direkt an den Defekten bestimmen zu können.

Den Wissenschaftlern am Max-Planck-Institut für Festkörperforschung in Stuttgart ist es nun gelungen, die Schwingungen dieser "Nano-Saiten" auf atomarer Skala zu bestimmen. Dabei zeigte sich, dass Fehler im Bauplan der Nanoröhren ihre Schwingungsbewegung stark beeinflussen. In der Analogie der Violinsaite ausgedrückt, fanden die Forscher heraus, dass Nanoröhren von unterschiedlichem Durchmesser auch verschiedene Tonhöhen haben und dass Defekte, wie fehlende Atome, die Tonhöhe stark verändern. Im Extremfall, wenn zwei Defekte sehr dicht beieinander liegen, bleibt die "Nano-Saite" in diesem Abschnitt sogar still. Um die atomare Welt der Schwingungen sichtbar zu machen, benutzten die Wissenschaftler ein Rastertunnelmikroskop, das bei einer Temperatur von 6 K (-267°C) arbeitet. Die Schwingungsmoden der Kohlenstoff-Nanoröhren können mit der dem Instrument typischen sub-Nanometer-Auflösung bestimmt werden, da die tunnelnden Elektronen Energie an das vibrierende Kohlenstoffgitter verlieren und so die Stärke des Tunnelstroms variiert wird.

Die neuen Messergebnisse sind wichtige Meilensteine auf dem Weg zum Verständnis von Strom- und Wärmetransport in Kohlenstoff-Nanoröhren, Eigenschaften, die ihre Verwendbarkeit in elektronischen Bauelementen bestimmen. Die Schwingungen von Atomen verringern die elektrische Leitfähigkeit und begrenzen die Leistungsfähigkeit von Nanotransistoren oder anderen Bauelementen. Parallel dazu nimmt die Festigkeit und die Fähigkeit, Wärme zu transportieren, mit steigender Defektdichte ab.

Originalveröffentlichung:

L. Vitali, M. Burghard, M.A. Schneider, Lei Liu, S.Y. Wu, C.S. Jayanthi and K. Kern
Phonon Spectromicroscopy of Carbon Nanostructures with Atomic Resolution
Physical Review Letters, 93, 136103, 24. September 2004

Weitere Informationen erhalten Sie von:

Prof. Dr. Klaus Kern
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: +49 711 689-1660
Fax: +49 711 689-1662
E-Mail: k.kern@fkf.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie