Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dunkle Energie treibt Galaxien auseinander

14.09.2004


Eigentlich sollte sich die Ausdehnungsgeschwindigkeit unseres Universums wegen der gewaltigen Anziehungskraft der unvorstellbar großen Masse in den Milliarden von Galaxien langsam verringern. Stattdessen dehnt sich das Universum immer schneller aus. Als Grund vermuten Astrophysiker eine geheimnisvolle "dunkle Energie", die die Galaxien auseinandertreibt. Eine neue Emmy-Noether-Gruppe an der Universität Bonn will mehr über diese rätselhafte Energieform erfahren. Dazu blicken die Forscher mehr als fünf Milliarden Jahre in die Vergangenheit.



Albert Einstein hat geschummelt: Seine "Allgemeine Relativitätstheorie" sagte voraus, dass das Universum entweder expandiert oder sich zusammenzieht. Zur Zeit des großen Physikers galt unser All aber als statisch - eine Ungereimtheit, die Einstein dadurch beseitigte, indem er eine geheimnisvolle "kosmologische Konstante" in seine Gleichung schmuggelte. Als Edwin Hubble später entdeckte, dass das Universum in der Tat expandiert, hat Einstein die Konstante dann zurückgezogen und sie angeblich als seinen "größten Irrtum" bezeichnet. Augenscheinlich voreilig: "Mittlerweile gibt es wieder eine Verwendung für die kosmologische Konstante", schmunzelt Dr. Thomas Reiprich: "Sie kann die kürzlich gemachte Beobachtung erklären, dass sich das Universum mit immer größerer Geschwindigkeit ausdehnt." Eine weitere Ungereimtheit kann sie allerdings nicht beseitigen: Die Quantentheorie sagt zusammen mit der allgemeinen Relativitätstheorie voraus, dass das Weltall sich eigentlich noch viel schneller ausdehnen müsste, als es das tatsächlich tut. Die für sich genommen hervorragend funktionierenden wichtigsten physikalischen Theorien führen in diesem Punkt zusammen zu einem Widerspruch - das ist den Physikern natürlich ein Dorn im Auge.



Der Emmy-Noether-Stipendiat der Deutschen Forschungsgemeinschaft (DFG) will zusammen mit seiner Doktorandin Oxana Nenestyan aus Rumänien und dem US-Amerikaner Dr. Danny Hudson herausfinden, warum das so ist. Dazu konzentrieren sie sich auf die so genannten Galaxienhaufen, Ansammlungen von oft mehreren Tausend Galaxien. "Wir wollen herausfinden, wie viele Galaxienhaufen einer bestimmten Masse es in unserer Umgebung und in großer Entfernung gibt", so Thomas Reiprich. "Dazu untersuchen wir eine Stichprobe von etwa 60 Haufen in unserer Nähe" - sprich: in einer Distanz von weniger als 700 Millionen Lichtjahren - "und vergleichen sie mit Galaxienhaufen, die etwa fünf Milliarden Lichtjahre von uns entfernt sind." Eine Reise in die Vergangenheit: Die Signale, die sie von diesen entfernten Haufen empfangen, sind ebenfalls schon fünf Milliarden Jahre alt - schließlich bewegt sich nichts schneller als das Licht. Durch Röntgenmessungen und optische Beobachtungen können die Astrophysiker bestimmen, wie schwer die Galaxienhaufen sind. Der Vergleich der Anzahl junger (= naher) und alter (= ferner) Haufen gleicher Masse erlaubt dann Rückschlüsse auf die Menge und Beschaffenheit der dunklen Energie im Universum.

Crash von vielen Billiarden Sonnenmassen

Das Weltall interessiert Reiprich schon seit seiner Kindheit - "ich habe schon früher alles zu diesem Thema gelesen, was mir in die Hände fiel." Noch heute begeistern ihn die Dramen, die sich tagtäglich in unglaublicher Entfernung von der Erde abspielen. "Wenn zwei Galaxienhaufen miteinander verschmelzen, prallen Massen mit einem Gesamtgewicht von Billiarden Sonnen und einer Geschwindigkeit von mehr als Tausend Kilometern in der Sekunde aufeinander - das sind die energiereichsten Prozesse, die das Universum nach dem Urknall gesehen hat." Die letzten drei Jahre war der 33jährige an der University of Virginia; seinen Doktor hatte er zuvor am Max-Planck-Institut für extraterrestrische Physik in Garching gemacht. "Die Arbeitsmöglichkeiten in den USA sind hervorragend, da kommt Deutschland sicherlich noch nicht mit." Eine Fördermöglichkeit wie das Emmy-Noether-Programm, das es ihm bereits ohne Professur erlaubt, eine eigene Arbeitsgruppe zu führen, gebe es dort seines Wissens aber nicht. "Das ist wirklich eine tolle Sache!"

Für Bonn hat sich der gebürtige Rheinland-Pfälzer vor allem aus fachlichen Gründen entschieden. "Hier gibt es eine starke Arbeitsgruppe, die sich mit dem Gravitationslinseneffekt beschäftigt - eine Methode, die unsere Röntgenuntersuchungen hervorragend ergänzt." Ähnlich wie die Röntgendaten, die Reiprich von Satelliten der Europäischen Raumfahrtagentur ESA sowie der NASA erhält, erlaubt der Gravitationslinseneffekt nämlich ebenfalls eine Abschätzung der Masse weit entfernter Galaxienhaufen. Der Bonner Spezialist auf diesem Gebiet, Professor Dr. Peter Schneider, ist übrigens ein ehemaliger Kollege: Er arbeitete am Max-Planck-Institut für Astrophysik - "das war in Garching direkt in unserer Nachbarschaft."

Ansprechpartner:

Dr. Thomas Reiprich
Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn
Telefon: 0228/73-3642
E-Mail: thomas@reiprich.net

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de
http://www.dark-energy.net

Weitere Berichte zu: Astrophysik Galaxienhaufen Reiprich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten