Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dunkle Energie treibt Galaxien auseinander

14.09.2004


Eigentlich sollte sich die Ausdehnungsgeschwindigkeit unseres Universums wegen der gewaltigen Anziehungskraft der unvorstellbar großen Masse in den Milliarden von Galaxien langsam verringern. Stattdessen dehnt sich das Universum immer schneller aus. Als Grund vermuten Astrophysiker eine geheimnisvolle "dunkle Energie", die die Galaxien auseinandertreibt. Eine neue Emmy-Noether-Gruppe an der Universität Bonn will mehr über diese rätselhafte Energieform erfahren. Dazu blicken die Forscher mehr als fünf Milliarden Jahre in die Vergangenheit.



Albert Einstein hat geschummelt: Seine "Allgemeine Relativitätstheorie" sagte voraus, dass das Universum entweder expandiert oder sich zusammenzieht. Zur Zeit des großen Physikers galt unser All aber als statisch - eine Ungereimtheit, die Einstein dadurch beseitigte, indem er eine geheimnisvolle "kosmologische Konstante" in seine Gleichung schmuggelte. Als Edwin Hubble später entdeckte, dass das Universum in der Tat expandiert, hat Einstein die Konstante dann zurückgezogen und sie angeblich als seinen "größten Irrtum" bezeichnet. Augenscheinlich voreilig: "Mittlerweile gibt es wieder eine Verwendung für die kosmologische Konstante", schmunzelt Dr. Thomas Reiprich: "Sie kann die kürzlich gemachte Beobachtung erklären, dass sich das Universum mit immer größerer Geschwindigkeit ausdehnt." Eine weitere Ungereimtheit kann sie allerdings nicht beseitigen: Die Quantentheorie sagt zusammen mit der allgemeinen Relativitätstheorie voraus, dass das Weltall sich eigentlich noch viel schneller ausdehnen müsste, als es das tatsächlich tut. Die für sich genommen hervorragend funktionierenden wichtigsten physikalischen Theorien führen in diesem Punkt zusammen zu einem Widerspruch - das ist den Physikern natürlich ein Dorn im Auge.



Der Emmy-Noether-Stipendiat der Deutschen Forschungsgemeinschaft (DFG) will zusammen mit seiner Doktorandin Oxana Nenestyan aus Rumänien und dem US-Amerikaner Dr. Danny Hudson herausfinden, warum das so ist. Dazu konzentrieren sie sich auf die so genannten Galaxienhaufen, Ansammlungen von oft mehreren Tausend Galaxien. "Wir wollen herausfinden, wie viele Galaxienhaufen einer bestimmten Masse es in unserer Umgebung und in großer Entfernung gibt", so Thomas Reiprich. "Dazu untersuchen wir eine Stichprobe von etwa 60 Haufen in unserer Nähe" - sprich: in einer Distanz von weniger als 700 Millionen Lichtjahren - "und vergleichen sie mit Galaxienhaufen, die etwa fünf Milliarden Lichtjahre von uns entfernt sind." Eine Reise in die Vergangenheit: Die Signale, die sie von diesen entfernten Haufen empfangen, sind ebenfalls schon fünf Milliarden Jahre alt - schließlich bewegt sich nichts schneller als das Licht. Durch Röntgenmessungen und optische Beobachtungen können die Astrophysiker bestimmen, wie schwer die Galaxienhaufen sind. Der Vergleich der Anzahl junger (= naher) und alter (= ferner) Haufen gleicher Masse erlaubt dann Rückschlüsse auf die Menge und Beschaffenheit der dunklen Energie im Universum.

Crash von vielen Billiarden Sonnenmassen

Das Weltall interessiert Reiprich schon seit seiner Kindheit - "ich habe schon früher alles zu diesem Thema gelesen, was mir in die Hände fiel." Noch heute begeistern ihn die Dramen, die sich tagtäglich in unglaublicher Entfernung von der Erde abspielen. "Wenn zwei Galaxienhaufen miteinander verschmelzen, prallen Massen mit einem Gesamtgewicht von Billiarden Sonnen und einer Geschwindigkeit von mehr als Tausend Kilometern in der Sekunde aufeinander - das sind die energiereichsten Prozesse, die das Universum nach dem Urknall gesehen hat." Die letzten drei Jahre war der 33jährige an der University of Virginia; seinen Doktor hatte er zuvor am Max-Planck-Institut für extraterrestrische Physik in Garching gemacht. "Die Arbeitsmöglichkeiten in den USA sind hervorragend, da kommt Deutschland sicherlich noch nicht mit." Eine Fördermöglichkeit wie das Emmy-Noether-Programm, das es ihm bereits ohne Professur erlaubt, eine eigene Arbeitsgruppe zu führen, gebe es dort seines Wissens aber nicht. "Das ist wirklich eine tolle Sache!"

Für Bonn hat sich der gebürtige Rheinland-Pfälzer vor allem aus fachlichen Gründen entschieden. "Hier gibt es eine starke Arbeitsgruppe, die sich mit dem Gravitationslinseneffekt beschäftigt - eine Methode, die unsere Röntgenuntersuchungen hervorragend ergänzt." Ähnlich wie die Röntgendaten, die Reiprich von Satelliten der Europäischen Raumfahrtagentur ESA sowie der NASA erhält, erlaubt der Gravitationslinseneffekt nämlich ebenfalls eine Abschätzung der Masse weit entfernter Galaxienhaufen. Der Bonner Spezialist auf diesem Gebiet, Professor Dr. Peter Schneider, ist übrigens ein ehemaliger Kollege: Er arbeitete am Max-Planck-Institut für Astrophysik - "das war in Garching direkt in unserer Nachbarschaft."

Ansprechpartner:

Dr. Thomas Reiprich
Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn
Telefon: 0228/73-3642
E-Mail: thomas@reiprich.net

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de
http://www.dark-energy.net

Weitere Berichte zu: Astrophysik Galaxienhaufen Reiprich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie