Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG fördert den Bau intelligenter Detektoren in Heidelberg

03.09.2004


DFG bewilligt deutsch-norwegisches Graduiertenkolleg zur Entwicklung und Anwendung von intelligenten Detektoren in der Teilchenphysik - Physikalisches Institut der Universität Heidelberg maßgeblich beteiligt - Finanzierung des internationalen Graduiertenkollegs für zunächst viereinhalb Jahre zugesichert



Die Deutsche Forschungsgemeinschaft (DFG) bewilligte kürzlich ein neues internationales Graduiertenkolleg, das sich der Entwicklung und Anwendung von intelligenten Detektoren widmet. Ziel der deutsch-norwegischen Zusammenarbeit ist die Herstellung und Anwendung spezieller Detektoren, die dem Nachweis verschiedenster physikalischer Teilchen dienen. "Auf der deutschen Seite sind das hiesige Kirchhoff-Institut für Physik sowie das Physikalische Institut der Universität Heidelberg beteiligt," erklärt Professor Dr. Norbert Herrmann, der Sprecher des Graduiertenkollegs auf deutscher Seite. "Dabei setzen wir gerade in den Erfahrungsaustausch, auch im internationalen Rahmen, große Hoffnungen - denn ein Kooperationspartner alleine kann die notwendigen Arbeiten kaum mehr leisten. Das wird erst durch eine gewisse Arbeitsteilung möglich."



Die wird nun gegeben sein durch das am 1. Oktober 2004 startende Graduiertenkolleg - einer befristeten Einrichtung der Hochschulen zur Förderung des graduierten wissenschaftlichen Nachwuchses - das die DFG jüngst vorbehaltlich einrichtete. "Es steht noch die endgültige Freigabe für die norwegische Seite aus, was jedoch kein Problem sein dürfte," freut sich Professor Herrmann, der im Moment mit der Auswahl der zwölf Doktoranden beschäftigt ist, denen durch die DFG-Initiative die Möglichkeit geboten wird, ihre Arbeit im Rahmen eines koordinierten, von mehreren Hochschullehrern getragenen Forschungsprogramms durchzuführen. Sie werden eine vielseitige and technologisch aktuelle Ausbildung erhalten, die im Rahmen des Graduiertenkollegs durch Gastwissenschaftler und einzuladende Experten bereitgestellt wird.

Hierbei ist vor allem der Aspekt der Zukunftsfähigkeit wichtig, werden doch viele physikalische Großexperimente oft sehr langfristig betrieben. "Im Moment sind wir unter anderem mit dem Prototyp eines so genannten Übergangsstrahlungsdetektors beschäftigt, der in rund vier Jahren im Rahmen eines Schwerionenexperiments zum Einsatz kommen soll - um danach weitere zehn Jahre lang genutzt zu werden." Grundsätzliches Ziel der Wissenschaftler ist dabei stets, die bei einer Kollision verschiedener Teilchen entstehenden Spuren sehr schnell nach bestimmten Merkmalen zu durchsuchen. So lässt man beispielsweise Elektronen mit Positronen kollidieren, oder ’schießt’ Blei auf Blei, was zu Schwerionenstößen führt. Hierfür benötigt man Detektoren, wie ganz allgemein Nachweisgeräte für Teilchen oder Strahlung bezeichnet werden - auch wenn man in der Teilchenphysik unter einem Detektor oft auch eine Kombination mehrerer Einzeldetektoren versteht, mit der sich die Endprodukte einer bestimmten teilchenphysikalischen Reaktion nachweisen und identifizieren lassen. Natürlich sollen die Detektoren möglichst viele der stattfindenden Reaktionen erfassen - doch werden hierfür auch sehr hohe Rechenleistungen benötigt.

"Und genau diesen Prozess versuchen wir zu verschlanken. Indem wir nämlich möglichst schon im Detektor selbst eine Auswahl vornehmen, und unerwünschte Störprozesse möglichst früh ausfiltern, brauchen sich die nachgeschalteten Systeme nur auf die wirklich wichtigen Informationen zu konzentrieren. Jedoch müssen hierfür sehr, sehr viele Signale bereits im Detektor auf ihre Tauglichkeit hin - also darauf, ob interessante Spuren enthalten sind - untersucht werden." Mitunter wird aus einer Million von ’Ereignisanwärtern’ gerade einmal ein brauchbares Ereignis heraussortiert. "Hierfür muss der Detektor jedoch in der Lage sein, selbst extrem komplexe Entscheidungen zu treffen - und das braucht enorme Reserven. Als Ausgleich sinkt jedoch das Datenvolumen, das aus dem Detektor fließt - und das spart mitunter enorme Kosten." So gesehen könnte man die neuen, intelligenten Detektoren auch als Informationsdestillen bezeichnen, die nur hochwertige Daten liefern, während der ’Datenmüll’ frühzeitig abgesondert wird. Zugleich jedoch sind die Forscher bemüht, die Qualität des ’Destillats’ zu steigern, um zu verhindern dass einerseits wertvolle Information als unnütz verworfen, oder andererseits uninteressante Muster als relevant eingestuft werden.

Die Doktoranden, die in den nächsten Jahren mit diesem Themenkomplex beschäftigt sein werden, können sich folglich auf eine zwar anspruchsvolle, aber doch auch hochinteressante berufliche Zukunft freuen. Zumal es innerhalb eines internationalen DFG-Graduiertenkollegs üblich ist, während der Ausbildung ein halbes Jahr im jeweiligen Partnerland zu verbringen. "Auch dies dürfte der Qualität der Ausbildung zu Gute kommen. Denn während wir hier in Heidelberg selbst Chips für die Detektoren entwickeln, und dabei mitunter ganz grundlegend beim Silizium anfangen, bemühen sich die Kollegen in Bergen und Oslo vor allem darum, wie man die Software so gestalten kann, dass sie auch auf frei käuflicher, kommerzieller Hardware funktioniert. Wer hier schon früh in seiner wissenschaftlichen Karriere Einblick in beide Bereich bekommt, hat die besten Zukunftsaussichten." Zumal bereits jetzt klar ist, dass in viereinhalb Jahren ein Antrag auf Verlängerung des DFG-Graduiertenkollegs ’,Entwicklung und Anwendung von intelligenten Detektoren" um weitere viereinhalb Jahre gestellt werden wird. Die Arbeit in diesem interessanten Gebiet der Physik wird also auch künftig kaum ausgehen. Heiko P. Wacker

Rückfragen bitte an:
Professor Dr. Norbert Herrmann
Physikalisches Institut der Universität Heidelberg
Tel. 06221 549464
herrmann@physi.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: DFG DFG-Graduiertenkollegs Detektor Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie