Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher machen erstmals Lichtwellen sichtbar

30.08.2004


Energieänderung (gemessen in der Einheit eV) der durch einen Röntgenpuls zu verschiedenen Zeiten in der Lichtwelle des roten Laserpulses (gemessen in der Einheit fs) erzeugten Elektronen.
Bild: Max-Planck-Institut für Quantenoptik/TU Wien


Entstehen und Verschwinden des elektrischen Feldes des 4,3 Femtosekunden langen Pulses aus rotem Licht (Wellenlänge ~ 750 Nanometer), aufgezeichnet mit dem Attosekunden-Oszilloskop.
Bild: Max-Planck-Institut für Quantenoptik/TU Wien


Deutsch-österreichischem Forscherteam gelingt erste Messung der hyperschnellen Schwingungen des sichtbaren Lichts mit Hilfe eines "Attosekunden-Oszilloskops"


Unser Auge kann zwar die Intensität des Lichtes, nicht aber die Lichtwellen selbst wahrnehmen, weil diese viel zu schnell, etwa 1.000 Trillionen Mal pro Sekunde schwingt. Einem internationalen Forscherteam der Technischen Universität Wien, des Max-Planck-Institutes für Quantenoptik und der Universität Bielefeld ist es jetzt unter Leitung von Prof. Ferenc Krausz gelungen, das instantane elektrische Feld von rotem Licht mit einer Auflösung von 100 Attosekunden aufzuzeichnen (Science, 27. August 2004). Mit Hilfe ultraschneller Röntgenpulse gelang dem deutsch-österreichischen Team erstmals, das Feld des Lichts - ähnlich wie Töne in Sinusschwingungen - direkt sichtbar zu machen und die bis dato schnellste Messung durchzuführen.

Seit den berühmten Experimenten von Heinrich Hertz Ende des 19. Jahrhunderts ist bekannt, dass Licht - ebenso wie Radiowellen oder Mikrowellen - eine Welle ist, die aus elektrischen und magnetischen Feldern besteht. Der einzige Unterschied ist die Anzahl der Schwingungen dieser Felder pro Sekunde. In Radio- und Mikrowellen ändern diese Schwingungen ihre Richtung ungefähr millionen- bis trillionenfach pro Sekunde. Die Änderung des Feldes dieser Wellen kann man durch Wandlung in elektrischen Strom und Darstellung dieses Stromes mit speziellen elektronischen Geräten, so genannten Oszilloskopen, messen. Doch das Feld von Lichtwellen schwingt im Gegensatz dazu ungefähr 1.000 Trillionen, also 1.000 000 000 000 000 mal pro Sekunde, so dass bei der Schwingung der Feldstärke zwischen einem Minimum und einem Maximum nur ca. eine Femtosekunde (1 Femtosekunde ist ein Tausendstel einer Trillionstel-Sekunde) vergeht. Dies ist einige zehntausendmal schneller also man mit heute verfügbaren Geräten messen kann. Um die Änderung des Lichtfeldes darstellen zu können, bedarf es also eines Oszilloskops mit einer Auflösung von nur wenigen hundert Attosekunden (1 Attosekunde ist eine Tausendstel Femtosekunde).


Eine solche Messanordnung haben nun die Forscher um Ferenc Krausz verwirklicht. Möglich wurde dies durch den Einsatz eines nur 250 Attosekunden langen Pulses weicher Röntgenstrahlung, der vom gleichen Forscherteam erst wenige Monate zuvor reproduzierbar erzeugt wurde [1]. Dieser extrem kurze und hochenergetische Röntgenpuls schlägt Elektronen aus Atomen heraus, mit deren Hilfe die elektrische Feldstärke eines aus nur wenigen Schwingungszyklen bestehenden roten Laserlichtes gemessen wird. Das elektrische Feld des roten Lichtes bremst oder beschleunigt die Elektronen, die durch den Röntgenpuls mit einer Zeit-Genauigkeit von 100 Attosekunden gegenüber der Lichtwelle freigesetzt werden. Misst man die Änderung der Energie der Elektronen (angeführt in der Einheit Elektronenvolt, eV) als Funktion der Zeitdifferenz (angeführt in der Einheit Femtosekunden, fs) zwischen dem Röntgenpuls und der Laser-Lichtwelle, so sieht man deutlich das Anwachsen und Abklingen des Pulses und dessen Oszillationen mit einer Periode von 2.5 Femtosekunden, entsprechend der Periode von rotem Licht mit einer Wellenlänge von 750 Nanometer.

Aus der gemessenen Energieänderung lässt sich die instantane Stärke und Richtung des elektrischen Feldes direkt bestimmen (Abb. 2). Die rote Kurve zeigt das elektrische Feld des nur wenige Femtosekunden langen roten Lichtpulses, aufgenommen mit einer Messeinrichtung, die man als erstes Attosekunden-Oszilloskop bezeichnen kann. Diese neue Technik erlaubt die direkte und genaue Vermessung der Feldstärke von Lichtpulsen mit sehr breitem Spektrum, bestehend aus vielen verschiedenen Farben. Mit der Fähigkeit, den zeitlichen Verlauf der elektrischen Feldstärke aufzulösen, erhält man die Möglichkeit ultrakurze Lichtblitze mit nahezu beliebiger Wellenform reproduzierbar zu erzeugen. Für solche synthetisierten Lichtwellen sind zahlreiche interessante Anwendungen in Aussicht, wie die gezielte Steuerung atomarer und molekularer Prozesse, die Entwicklung molekularer Elektronik oder von Röntgenlaserquellen.
[MÜ/AT]

Originalveröffentlichung:

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz
Direct Measurement of Light Waves, Science, 27 August 2004

Weitere Informationen erhalten Sie von:

Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel.: 089 32905-602
Fax: 089 32905-314
E-Mail: ferenc.krausz@mpq.mpg.de

Prof. Ferenc Krausz | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Attosekunde Femtosekunde Lichtwelle Röntgenpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE