Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den magnetischen Sonnenfeldern auf der Spur

20.06.2001


Auf der Sonne entladen sich gewaltige Magnetfelder, was auch Auswirkungen auf das Leben auf der Erde hat. Eine Nachwuchsforschergruppe der RUB, die seit 1998 von der VolkswagenStiftung gefördert wird, entwickelt am Computer mathematische Modelle, um die Funktionsweise der Magnetfelder zu beschreiben. Mit ersten Erfolgen: Ihr ist es bereits gelungen, einige der bisherigen Formeln zu verbessern.

Gewaltige Energieausbrüche auf der Sonne ...
... beeinflussen auch unser Leben auf der Erde


VW-Stiftung fördert Nachwuchsforschergruppe an der RUB

Wenn das Fernsehbild flimmert und die Telefonleitung gestört ist, muss nicht unbedingt die Technik versagt haben - gewaltige Energieausbrüche auf der Sonne, so genannte solar flares, könnten die Ursache dafür sein. Auf unserem Tagesgestirn entladen sich Magnetfelder, wobei soviel Energie freigesetzt wird wie bei der Detonation mehrerer Millionen Atombomben. Eine Nachwuchsforschergruppe der RUB, die seit 1998 von der VolkswagenStiftung gefördert wird, entwickelt am Computer mathematische Modelle, um die Funktionsweise der Magnetfelder zu beschreiben ("Topologische Struktur elektromagnetischer Felder in leitenden Fluiden", Leitung: Dr. Gunnar Hornig, Institut für Theoretische Physik). Mit ersten Erfolgen: Ihr ist es bereits gelungen, einige der bisherigen Formeln zu verbessern.

Selbstorganisation der Materie

Wo der Sonnenwind auf das Magnetfeld der Erde trifft, werden Teilchen beschleunigt, die wiederum in den Polarregionen zu den Nordlichtern (Aurora) und so genannten geomagnetischen Stürmen führen. Auch in entfernteren Objekten, z. B. Pulsaren, Galaxien und protogalaktischen Wolken, mehren sich die Hinweise, dass Magnetfelder nach der Gravitation den größten Einfluss haben auf die Selbstorganisation der Materie. Diesem Phänomen ist die Nachwuchsforschergruppe der RUB auf der Spur: Sie will die Funktionsweise dieser Magnetfelder untersuchen und damit einer der größten Kraftquellen des Universums eine höhere Aufmerksamkeit zukommen lassen.

Verknotungen und Verknüpfungen

Der Schlüssel dazu liegt in ionisierter Materie, dem Plasma, das mit wenigen Ausnahmen überall im Universum vorliegt, wenn auch in sehr verschiedenen Zuständen - von extrem heißen und dichten Plasmen bis zu stark verdünnten, nur teilweise ionisierten Plasmen. Darin sind die Magnetfelder eingebettet. Eine Fluid-Theorie, die so genannte Magnetohydrodynamik, beschreibt das Plasma als ein elektrisch gut leitendes Fluid, in dem durch die Strömung magnetische Felder erzeugt werden können, die dann wiederum durch Kräfte, die so genannten Lorentz-Kräfte, auf das Plasma rückwirken. Durch diese Wechselwirkung zwischen Plasma und Magnetfeld kann eine beeindruckende Vielfalt von Strukturen entstehen, die oft Verknotungen oder Verknüpfungen des magnetischen Flusses zeigen. Diese komplexen Feldstrukturen können enorme Mengen an Energie speichern.

Dramatische Eruptionen

Eine typische Eigenschaft astrophysikalischer Plasmen ist, dass die Dynamik dieser Strukturen aus einem Wechselspiel besteht von idealem Verhalten, bei dem sich das Plasma nur unter Erhaltung aller Verknüpfungen (Erhaltung der Topologie) bewegt, und einer Art Aufreißen der magnetischen Struktur, der so genannten magnetischen Rekonnexion. Dabei bricht der magnetische Fluss auf und verbindet sich neu (engl. "re-connects") - ein Prozess, der oft von dramatischen Eruptionen begleitet ist und der große Energiemengen freisetzen kann. Solche Vorgänge lassen sich sehr gut auf der Oberfläche unsere Sonne verfolgen, wie die jüngsten, beeindruckenden Beobachtungen durch die Satelliten Yohkoh, SOHO und TRACE zeigen. Sie spielen auch eine zentrale Rolle für die unmittelbare Umgebung der Erde.

Mathematische Modelle entwickeln ...

In der Gruppe arbeiten junge Forscher interdisziplinär auf einem Gebiet zwischen Mathematik und Physik. Für die Bochumer Wissenschaftler scheint die Sonne allerdings im Computer. Im Gegensatz zu den klassischen Astronomen beobachten sie die Sonne nicht direkt. Ihre Aufgabe ist, mathematische Modelle zu entwickeln, mit deren Hilfe sich die Funktionsweise der Magnetfelder beschreiben lässt. Sie bedienen sich dabei einer Theorie, deren Anfänge auf den berühmten Mathematiker Gauss im Jahr 1833 zurückreichen: der mathematischen Knotentheorie. Neu ist, dass sie diese mit Ansätzen der Differentialgeometrie kombinieren und anwenden auf die magnetischen Felder in astrophysikalischen Plasmen.

... und optimieren

Mit ersten Erfolgen: Den Forschern ist es bereits gelungen, einige der bisherigen Formeln zu verbessern. Die Nachwuchsgruppe will einen kompletten Satz an mathematischen Berechnungsgrößen entwickeln. Dabei haben sie auch eine Möglichkeit gefunden, eine Invariante darzustellen, die einen bestimmten Typ von Verknotung magnetischer Feldlinien misst.

Den Nachwuchs fördern

Mit ihrem Programm "Nachwuchsgruppen an Universitäten" gibt die Volkswagenstiftung jungen, herausragend qualifizierten Wissenschaftlern die Möglichkeit, frühzeitig eigenständige Forschung zu betreiben - auf vorwiegend neuen Gebieten, die zwischen den Disziplinen angesiedelt sind. Charakteristikum dieser Förderinitiative ist, dass die jungen Forscherinnen und Forscher ihre Arbeitsgruppen selbständig leiten.

Weitere Informationen

Dr. Gunnar Hornig, Topologische Fluiddynamik, Institut für Theoretische Physik, Fakultät für Physik und Astronomie der RUB, NB 7/31, Tel. 0234/32-23799, Fax: 0234/32-14177, E-Mail: gh@tp4.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.tp4.ruhr-uni-bochum.de/vw/Projekt.html

Weitere Berichte zu: Magnetfeld Nachwuchsforschergruppe Plasma RUB

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie