Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den magnetischen Sonnenfeldern auf der Spur

20.06.2001


Auf der Sonne entladen sich gewaltige Magnetfelder, was auch Auswirkungen auf das Leben auf der Erde hat. Eine Nachwuchsforschergruppe der RUB, die seit 1998 von der VolkswagenStiftung gefördert wird, entwickelt am Computer mathematische Modelle, um die Funktionsweise der Magnetfelder zu beschreiben. Mit ersten Erfolgen: Ihr ist es bereits gelungen, einige der bisherigen Formeln zu verbessern.

Gewaltige Energieausbrüche auf der Sonne ...
... beeinflussen auch unser Leben auf der Erde


VW-Stiftung fördert Nachwuchsforschergruppe an der RUB

Wenn das Fernsehbild flimmert und die Telefonleitung gestört ist, muss nicht unbedingt die Technik versagt haben - gewaltige Energieausbrüche auf der Sonne, so genannte solar flares, könnten die Ursache dafür sein. Auf unserem Tagesgestirn entladen sich Magnetfelder, wobei soviel Energie freigesetzt wird wie bei der Detonation mehrerer Millionen Atombomben. Eine Nachwuchsforschergruppe der RUB, die seit 1998 von der VolkswagenStiftung gefördert wird, entwickelt am Computer mathematische Modelle, um die Funktionsweise der Magnetfelder zu beschreiben ("Topologische Struktur elektromagnetischer Felder in leitenden Fluiden", Leitung: Dr. Gunnar Hornig, Institut für Theoretische Physik). Mit ersten Erfolgen: Ihr ist es bereits gelungen, einige der bisherigen Formeln zu verbessern.

Selbstorganisation der Materie

Wo der Sonnenwind auf das Magnetfeld der Erde trifft, werden Teilchen beschleunigt, die wiederum in den Polarregionen zu den Nordlichtern (Aurora) und so genannten geomagnetischen Stürmen führen. Auch in entfernteren Objekten, z. B. Pulsaren, Galaxien und protogalaktischen Wolken, mehren sich die Hinweise, dass Magnetfelder nach der Gravitation den größten Einfluss haben auf die Selbstorganisation der Materie. Diesem Phänomen ist die Nachwuchsforschergruppe der RUB auf der Spur: Sie will die Funktionsweise dieser Magnetfelder untersuchen und damit einer der größten Kraftquellen des Universums eine höhere Aufmerksamkeit zukommen lassen.

Verknotungen und Verknüpfungen

Der Schlüssel dazu liegt in ionisierter Materie, dem Plasma, das mit wenigen Ausnahmen überall im Universum vorliegt, wenn auch in sehr verschiedenen Zuständen - von extrem heißen und dichten Plasmen bis zu stark verdünnten, nur teilweise ionisierten Plasmen. Darin sind die Magnetfelder eingebettet. Eine Fluid-Theorie, die so genannte Magnetohydrodynamik, beschreibt das Plasma als ein elektrisch gut leitendes Fluid, in dem durch die Strömung magnetische Felder erzeugt werden können, die dann wiederum durch Kräfte, die so genannten Lorentz-Kräfte, auf das Plasma rückwirken. Durch diese Wechselwirkung zwischen Plasma und Magnetfeld kann eine beeindruckende Vielfalt von Strukturen entstehen, die oft Verknotungen oder Verknüpfungen des magnetischen Flusses zeigen. Diese komplexen Feldstrukturen können enorme Mengen an Energie speichern.

Dramatische Eruptionen

Eine typische Eigenschaft astrophysikalischer Plasmen ist, dass die Dynamik dieser Strukturen aus einem Wechselspiel besteht von idealem Verhalten, bei dem sich das Plasma nur unter Erhaltung aller Verknüpfungen (Erhaltung der Topologie) bewegt, und einer Art Aufreißen der magnetischen Struktur, der so genannten magnetischen Rekonnexion. Dabei bricht der magnetische Fluss auf und verbindet sich neu (engl. "re-connects") - ein Prozess, der oft von dramatischen Eruptionen begleitet ist und der große Energiemengen freisetzen kann. Solche Vorgänge lassen sich sehr gut auf der Oberfläche unsere Sonne verfolgen, wie die jüngsten, beeindruckenden Beobachtungen durch die Satelliten Yohkoh, SOHO und TRACE zeigen. Sie spielen auch eine zentrale Rolle für die unmittelbare Umgebung der Erde.

Mathematische Modelle entwickeln ...

In der Gruppe arbeiten junge Forscher interdisziplinär auf einem Gebiet zwischen Mathematik und Physik. Für die Bochumer Wissenschaftler scheint die Sonne allerdings im Computer. Im Gegensatz zu den klassischen Astronomen beobachten sie die Sonne nicht direkt. Ihre Aufgabe ist, mathematische Modelle zu entwickeln, mit deren Hilfe sich die Funktionsweise der Magnetfelder beschreiben lässt. Sie bedienen sich dabei einer Theorie, deren Anfänge auf den berühmten Mathematiker Gauss im Jahr 1833 zurückreichen: der mathematischen Knotentheorie. Neu ist, dass sie diese mit Ansätzen der Differentialgeometrie kombinieren und anwenden auf die magnetischen Felder in astrophysikalischen Plasmen.

... und optimieren

Mit ersten Erfolgen: Den Forschern ist es bereits gelungen, einige der bisherigen Formeln zu verbessern. Die Nachwuchsgruppe will einen kompletten Satz an mathematischen Berechnungsgrößen entwickeln. Dabei haben sie auch eine Möglichkeit gefunden, eine Invariante darzustellen, die einen bestimmten Typ von Verknotung magnetischer Feldlinien misst.

Den Nachwuchs fördern

Mit ihrem Programm "Nachwuchsgruppen an Universitäten" gibt die Volkswagenstiftung jungen, herausragend qualifizierten Wissenschaftlern die Möglichkeit, frühzeitig eigenständige Forschung zu betreiben - auf vorwiegend neuen Gebieten, die zwischen den Disziplinen angesiedelt sind. Charakteristikum dieser Förderinitiative ist, dass die jungen Forscherinnen und Forscher ihre Arbeitsgruppen selbständig leiten.

Weitere Informationen

Dr. Gunnar Hornig, Topologische Fluiddynamik, Institut für Theoretische Physik, Fakultät für Physik und Astronomie der RUB, NB 7/31, Tel. 0234/32-23799, Fax: 0234/32-14177, E-Mail: gh@tp4.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.tp4.ruhr-uni-bochum.de/vw/Projekt.html

Weitere Berichte zu: Magnetfeld Nachwuchsforschergruppe Plasma RUB

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics