Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die kleinsten Flüstergalerien für Licht kommen aus Leipzig

26.07.2004


(a-c) Rasterelektronenmikroskopische Bilder einer ZnO-Nadel in verschiedenen Vergrößerungen, Längenskala in (a) und (c) ist 10 µm bzw. 300 nm. (d) Quadratwurzel-förmiger Verlauf des Durchmessers über der Länge


Leipziger Halbleiter-Forschern ist es gelungen, die weltweit kleinsten "Flüstergalerien" für sichtbares Licht herzustellen und zu untersuchen. Es handelt sich um nadelförmige Zinkoxid-Kristalle, deren Durchmesser sich stetig vom Mikrobereich (etwa 1 µm) bis in den Nanobereich (etwa 100 nm) bis herunter auf Null an der Spitze verjüngt.


Sogenannte Flüstergalerien haben die Eigenschaft, dass man auf Grund einer besonderen Beschaffenheit schallreflektierender Gewölbe geflüsterte Worte noch zig Meter weiter ohne Probleme verstehen kann. Dieses besonders gern von barocken Baumeistern angewandte Prinzip (z.B. Petersdom Rom, St. Pauls Cathedral London) gilt auch für andere Wellen als Schall, z.B. Licht. In einem Resonator umlaufende Wellen interferieren mit sich selbst und führen zu Resonanzen, wenn der Umlaufweg ein ganzzahliges Vielfaches N (Modenzahl) der Wellenlänge beträgt.

Andreas Rahm und Thomas Nobis, Doktoranden in der Abteilung Halbleiterphysik von Prof. Dr. Marius Grundmann am Institut für Experimentelle Physik II haben im Rahmen der Arbeiten in der DFG Forschergruppe 522 ’’Architektur von mikro- und nanodimensionalen Strukturelementen’’ nadelförmige Zinkoxid- (ZnO-) hergestellt bzw. untersucht, deren Durchmesser sich stetig vom Mikrobereich (etwa 1 µm) bis in den Nanobereich (etwa 100 nm) bis herunter auf Null an der Spitze verjüngt (Abb.1). Das Licht läuft auf der hexagonalen Querschnittsfläche um. Ein Analogon aus der Welt des Schalls und der Architektur wäre eine Kombination der berühmten Flüstergalerie in der St. Paul’s Kathedrale und des Swiss Re Towers in London. Allerdings sind die untersuchten Lichtwellenlängen und damit die Strukturgrößen etwa zwei Millionen mal kleiner als die Wellenlänge gesprochenen Schalls.


Für die Herstellung der ZnO Nanonadeln haben die Leipziger Physiker mit Mitteln der Deutschen Forschungsgemeinschaft eine neuartige Epitaxieanlage gebaut. Diese erlaubt die Züchtung mittels Laserablation bei besonders hohen Gasdrücken, was die Ausbildung von Nanostrukturen ermöglicht. Die Nanostrukturen wachsen in selbstorganisierter (engl.: self-assembled) Art und Weise. Das heißt, dass sie automatisch entstehen, bestimmt durch die eingestellten Wachstumsbedingungen und die mikroskopischen Wachstumsprozesse. Diese Methode heißt auch ’’bottom-up’’ Ansatz. Sie erlaubt die Herstellung großer Mengen gleichartiger Nanostrukturen zu viel geringerem Preis als es mit konventionellen Lithographie- und Ätztechniken (dem sogenannten ’’top-down’’ Ansatz) möglich wäre.

Bisherige theoretische und experimentelle Arbeiten zu Mikroresonatoren für Licht beschäftigten sich mit vergleichsweise großen Kavitäten (Hohlräumen) mit Modenzahlen N größer als 20. Die Flüstergalerie in der St. Paul’s Kathedrale in London hat zum Beispiel ein N von etwa 100 für Schall. Am Fuß der ZnO Nanonadel passen nur noch N=6 Lichtwellenlängen in den Umlaufweg. Mit abnehmendem Durchmesser ändert sich die Farbe der optischen Resonanzen (Abb.2). Die ZnO Spitze wird am Ende so dünn, dass N=1 und ein sogenannter monomodiger Wellenleiter erreicht werden. Die Leipziger Halbleiterphysiker haben zudem gefunden, dass eine von ihnen erarbeitete, vergleichsweise einfache Theorie die Farbe der optischen Resonanzen für alle Durchmesser mit hoher Präzision beschreibt. Diplom-Physiker Thomas Nobis hierzu: ’’Dies ist zunächst überraschend, da die von uns verwendete Theorie eigentlich nur für Modenzahlen N gelten sollte, die viel größer als 1 sind’’. Die Ergebnisse wurden bei der renommierten Zeitschrift ’’Physical Review Letters’’ angenommen und werden dort in Kürze veröffentlicht.

Selbstorganisierte Nanostrukturen stehen auch im Zentrum des kürzlich gestarteten Exzellenznetzes ’’SANDiE’’, das die Universität Leipzig koordiniert. Insgesamt 28 europäische Partner von Portugal bis Russland einschließlich den führenden europäischen Unternehmen der Photonikbranche erforschen dort selbstorganisierte Nanostrukturen und entwickeln darauf basierende neuartige Bauelemente. In den weiteren Arbeiten sollen nun aus den Leipziger nanoskopischen Resonatoren neuartige Laser hergestellt werden, die eines Tages z.B. als Basis für quantenkryptographische Datenübertragung mit Einzelphotonen dienen sollen.

Weitere Informationen:

Prof. Dr. Marius Grundmann
Telefon: 0341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de

Dr. Bärbel Adams | idw
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Berichte zu: Durchmesser Flüstergalerie Nanostruktur ZnO

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie