Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Eta Carinae so launisch leuchtet

21.07.2004


Bild vom Hubbel Weltraumteleskop von Eta Carinae mit seinem kleinen sog. Homunkulus-Nebel


Gaskomplex mit NGC 3372 mit vielen massereichen Sternen. Eta Carinae ist das helle Objekt im Zentrum.


RUB-Astronomin erhält Lise-Meitner-Preis

... mehr zu:
»Carinae »Eta »Hülle »LBV »Spektrum

Versteckt hinter zwei Nebeln liegt der rätselhafte Stern, den Dr. Kerstin Weis (Astronomisches Institut der RUB) für ihre Habilitation entlarven will: Eta Carinae ist ein sog. Leuchtkräftiger Blauer Veränderlicher (LBV), er verändert aus bisher ungeklärten Gründen in bestimmten zeitlichen Abständen sein Spektrum. Ist er von einer Hülle umgeben, die ihn pulsieren lässt? Oder ist er in Begleitung eines anderen massereichen Sterns unterwegs, der zeitweise seine Strahlung absorbiert? Diese Fragen will Dr. Weis anhand neuer, unvergleichlich detaillierter Aufnahmen des Hubble-Weltraumteleskops (HST) und des Very Large Telescope (VLT) der Europäischen Südsternwarte in Chile beantworten. Bei ihrer Arbeit wird sie für die nächsten zwei Jahre mit dem Lise-Meitner-Stipendium des NRW-Wissenschaftsministeriums unterstützt.

Vom massereichen Stern zum Leuchtkräftigen Blauen Veränderlichen


Eta Carinae wird auf ca. 120 Sonnenmassen geschätzt. Solche massereichen Sterne haben eine vergleichsweise kurze Lebensdauer und entwickeln sich schnell von stabilen Sternen zu Leuchtkräftigen Blauen Veränderlichen (LBV), die kühler sind und durch Sternwinde viel von ihrer Masse verlieren. Geladene Teilchen werden dabei von der Oberfläche ins All geschleudert. Die Helligkeit der LBVs variiert, manchmal kommt es auch aus bisher ungeklärten Gründen zu großen Eruptionen, in denen der Stern schlagartig seine Helligkeit um mehr als das hundertfache steigert. Auch das Spektrum der LBVs verändert sich.

Sternenpaar im dichten Nebel

Eta Carinae ist unter den LBVs derjenige, der uns am nächsten ist: Rund 7500 Lichtjahre ist er von der Erde entfernt. Was ihn außerdem besonders macht, ist, dass er erst kürzlich - 1847 - seine letzte große Eruption hatte. Damals war der Stern am Himmel sogar mit bloßem Auge als zweithellster Stern überhaupt zu sehen. Sein Spektrum verändert sich regelmäßig in einem Rhythmus von 5,52 Jahren. Aber was ruft diese Veränderungen hervor? Die Forscher haben dazu zwei Modelle entwickelt: Möglich wäre, dass ein weiterer massereicher Stern in seiner Nähe ist, mit dem er sich umkreist. Dabei kollidieren die beiden Sternwinde und produzieren Röntgenstrahlung. Die kühlere Atmosphäre des einen Sterns hebt bei größerer Nähe zwischen den beiden einige Strahlung des anderen auf, so dass sie nicht mehr messbar ist. Der Nachweis dieses Modells ist schwierig, denn zum einen würden alle Messungen immer beide Sterne auf einmal erfassen, zum anderen ist Eta Carinae von zwei Nebeln umgeben. Einer davon ist der dichte, staubreiche Homunkulusnebel, der die Verhältnisse in seinem Inneren verschleiert.

Einzelgänger mit pulsierender Hülle

Ein anderes mögliches Szenario ist, dass Eta Carinae - als Einzelgänger - eine massereiche Hülle hat, die den Stern kühlt und Staub bildet, der wiederum das Spektrum des Sterns absorbiert. Nach einer gewissen Expansion wird die Hülle möglicherweise abgestoßen, so dass sich der Stern wieder zusammenzieht und irgendwann eine neue Hülle abstößt: Der Stern pulsiert. Eine Pulsationsperiode von 5,52 Jahren wäre möglich.

Hochaufgelöste Spektren über lange Zeit

Wie Eta Carinae nun wirklich beschaffen ist, will Dr. Kerstin Weis anhand von Beobachtungen mit dem Very Large Telescope und dem Hubble-Weltraum-Teleskop herausfinden. "Die Aufnahmen sind schon ca. zu 90 Prozent gemacht und können ab sofort ausgewertet werden", so die Astronomin. Gerade die VLT-Daten haben einige entscheidende Vorteile, z. B. ist ihre spektrale Auflösung erheblich höher als die anderer Daten. Zudem wurden die Aufnahmen mit dem VLT kontinuierlich gemacht - beim Hubble-Teleskop werden nur alle ein bis zwei Monate Aufnahmen gemacht. Diese gute zeitliche Abdeckung ermöglicht es ihr, nach weiteren Periodizitäten zu suchen. Sog. Langspaltspektroskopien, die nur einen bestimmten Abschnitt des Sterns erfassen, sollen Aufschluss über die Temperaturen an verschiedenen Stellen des Sterns geben. Daraus wiederum lassen sich Rückschlüsse auf seine Expansion ziehen. Anhand der HST-Bilder könnte es gelingen, Nebel und Stern(e) voneinander zu trennen. Eine weitere Frage, mit der sich Kerstin Weis beschäftigt, ist die Herkunft der Nebel.

Lise-Meitner-Stipendium

Mit dem Lise-Meitner-Stipendium fördert das NRW-Wissenschaftsministerium junge Wissenschaftlerinnen auf ihrem Weg in die Spitzenforschung. Die Frauen werden für jeweils zwei Jahre bei ihrer Habilitation unterstützt, mit der Wissenschaftler den Nachweis der ihrer Lehrbefähigung erbringen und sich um eine Professur an Hochschulen bewerben können.

Weitere Informationen

Dr. Kerstin Weis, Astronomisches Institut der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23450, E-Mail: kweis@astro.rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.rub.de

Weitere Berichte zu: Carinae Eta Hülle LBV Spektrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen