Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Simulationen zu Schwarzen Löchern und Galaxien

02.07.2004


VolkswagenStiftung unterstützt mit 724.100 Euro die Entwicklung eines Hochleistungsrechners für astrophysikalische Simulationsrechnungen


Welche Rolle spielen Schwarze Löcher und aktive Galaxienkerne bei der Entwicklung von Galaxien und deren Strukturbildung? Wie entstehen massereiche Sterne als Grundbausteine von Galaxien? - Nur zwei der großen unbeantworteten Fragen in der Astronomie. Beobachtungsdaten liefern hierzu Anhaltspunkte, für ein besseres Verständnis der Galaxien- oder Sternenentwicklung jedoch sind Modellrechnungen unerlässlich. Derzeit aber halten astrophysikalische Simulationsrechnungen nicht Schritt mit den wissenschaftlichen Erkenntnissen aus der beobachtenden Sternenkunde, ermöglicht etwa durch satellitengestützte Teleskope wie das Hubble Space Telescope, oder durch neue Techniken für die erdbasierte Himmelsbeobachtung: Was fehlt, sind noch leistungsfähigere Rechner, die modernsten Anforderungen genügen.

Mit 724.100 Euro fördert die VolkswagenStiftung jetzt ein Vorhaben, dessen Ziel es ist, einen anwendungsspezifischen Hochleistungsrechner für astrophysikalische Simulationsrechnungen zu bauen. Die Architektur dieses Rechners soll ganz spezifisch die Simulation der Sternentstehung in interstellarer Materie und der Bildung und Entwicklung Schwarzer Löcher und ihrer Galaxien ermöglichen. Getragen wird das "Project GRACE: Astrophysical computer simulations using programmable hardware" von drei Wissenschaftlerteams unter Leitung von Professor Dr. Rainer Spurzem, Astronomisches Rechen-Institut Heidelberg, Professor Dr. Reinhard Männer, Lehrstuhl für Informatik V der Universität Mannheim, und Professor Dr. Andreas Burkert, Universitätssternwarte der Universität München.


Neben der Konstruktion des auch auf Hardware-Ebene programmierbaren Computers geht es darum, Algorithmen zu entwickeln und schließlich Berechnungen zu den oben genannten astrophysikalischen Fragestellungen vorzunehmen. Das Rechnerkonzept basiert auf der Kombination einer in Japan entwickelten Rechnerplattform höchster Leistungsfähigkeit zur Berechnung der Gravitationswechselwirkung für große Partikelzahlen mit einer flexibel rekonfigurierbaren Komponente zur Behandlung von Gasströmen in dichten stellaren Medien sowie im interstellaren Raum. Der Simulationsansatz berücksichtigt gravitative Kräfte einschließlich der Selbstgravitation sowie gasdynamische Prozesse. Die Ergebnisse der Simulationsrechnungen sollen mit aktuellen und zukünftigen Beobachtungsdaten verglichen werden. Erwartet wird, dass die Erkenntnisse einen großen Einfluss auf die astrophysikalische Forschung haben.

Kontakte:

VolkswagenStiftung, Presse- und Öffentlichkeitsarbeit, Dr. Christian Jung
Telefon: 05 11/83 81 - 380, E-Mail: jung@volkswagenstiftung.de

Förderinitiative der VolkswagenStiftung, Dr. Ulrike Bischler
Telefon: 05 11/83 81 - 350, E-Mail: bischler@volkswagenstiftung.de

Astronomisches Rechen-Institut Heidelberg
Professor Dr. Rainer Spurzem
Telefon: 0 62 21/4 05 - 230, E-Mail: spurzem@ari.uni-heidelberg.de

Universität Mannheim, Lehrstuhl für Informatik V
Professor Dr. Reinhard Männer
Telefon: 06 21/1 81 26 40, E-Mail: maenner@ti.uni-mannheim.de

Universität München, Universitätssternwarte
Professor Dr. Andreas Burkert
Telefon: 0 89/21 80 59 92, E-Mail: burkert@usm.uni-muenchen.de

Dr. Christian Jung | idw
Weitere Informationen:
http://www.volkswagenstiftung.de
http://www.volkswagenstiftung.de/presse-news/presse04/02072004.htm

Weitere Berichte zu: Galaxie Hochleistungsrechner Simulationsrechnung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics