Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurzpuls-Röntgenquellen für die Mikroskopie

29.05.2001


Elektronenmikroskopische Aufnahme des inneren Teils einer Fresnel-Zonenplatte


Mit der Erzeugung und Anwendung kohärenter, weicher Röntgenstrahlung befasst sich ein neuer Forschungsverbund unter der Leitung von Prof. Dr. Helmut Zacharias vom Physikalischen Institut der Westfälischen Wilhelms-Universität Münster. Die im Verbund mit Forschergruppen der TU Wien, der FH Koblenz/Remagen und den Universitäten von Mainz und Münster geplanten Arbeiten werden vom Bundesforschungsministerium mit einem Gesamtvolumen von 2,2 Millionen Mark gefördert.


Neue Strahlenquellen und röntgenoptische Bauelemente für die weiche Röntgenstrahlung haben in jüngerer Zeit erste mikroskopische Untersuchungen in einem Wellenlängenbereich ermöglicht, der bislang der optischen Mikroskopie verschlossen blieb. Besonders interessant für Beobachtung von biologische Objekten ist ein ganz bestimmter Wellenlängenbereich, und zwar das so genannte Wasserfenster. In diesem Spektralbereich lassen sich organische Materialien im Wasser mit einer Auflösung abbilden, die bislang nicht erreichbar war. So werden für erste hochauflösende Untersuchungen in den Bio- und Materialwissenschaften sowie in der Medizintechnik Synchrotron-Elektronenspeicherringe von Großforschungsanlagen als Quellen weicher Röntgenstrahlen eingesetzt. Der Zugang zu diesen Quellen ist allerdings aufgrund des großen apparativen und personellen Aufwandes mit hohen Kosten und langen Wartezeiten verbunden. Außerdem sind diese Quellen stationär und können somit nicht an das zu untersuchende Objekt herangeführt werden.


Eine vielversprechende Alternative zu diesen Quellen weicher Röntgenstrahlung ergibt sich durch neueste Entwicklungen in der Femtosekunden-Lasertechnik. Als Femtosekunde wird der zehn hoch 15te Teil einer Sekunde bezeichnet. Strahlt man Femtosekunden-Laserpulse hoher Intensität fokussiert auf ein Gasvolumen, so entsteht aus der sichtbaren Laserstrahlung mittels Frequenzvervielfachung (Erzeugung Hoher Harmonischer) weiche, kohärente Röntgenstrahlung.

Kernpunkt dieses Forschungsverbundes ist die Entwicklung und Optimierung einer kompakten, gepulsten Laserquelle mit hoher Wiederholrate für die Erzeugung weicher kohärenter Röntgenstrahlung. In Zusammenarbeit mit der Gruppe um Prof. Krausz von der TU Wien soll die Leistung und Pulsdauer von kommerziell erhältlichen Lasersystemen für diese Zwecke optimiert werden. Dies stellt eine hohe wissenschaftliche und technologische Herausforderung dar.

Um weiche Röntgenstrahlung für mikroskopische Beobachtung einsetzen zu können, benötigt man spezielle röntgenoptische Bauelemente, darunter sogenannte Fresnel-Zonenplatten (siehe Abbildung) und Vielschicht-Röntgenspiegel. Diese werden in Zusammenarbeit mit der Fachhochschule Koblenz/Remagen konzipiert und auf die zu entwickelnde Strahlenquelle optimiert.

In Kooperation mit der Universität Mainz (Prof. Schönhense) werden Anwendungen des Röntgen-Photoemissions-Mikroskops mit dieser Röntgenquelle evaluiert. Ein solches Gerät erlaubt eine elementspezifische Abbildung von Strukturen mit einer Auflösung von etwa 100 Nanometer (1 Nanometer ist ein Milliardstel Meter). Solche Informationen werden zum Beispiel für die Entwicklung neuer magnetischer Speichermedien mit noch höherer Kapazität besonders wichtig.

Mit derartigen Röntgenquellen ist eine neue Qualität bei Röntgenverfahren in der Halbleitertechnologie, in der Materialwissenschaft, in der Medizintechnik und in der biologischen Forschung zu erwarten. Die hohe Folgefrequenz des Lasers wird eine rasterartige Abtastung der zu untersuchenden Probe ermöglichen. Die Femtosekunden-Pulsdauer erlaubt zusätzlich die zeitliche Verfolgung von sehr schnellen Prozessen, wie zum Beispiel von strukturspezifischen Reaktionen in bioaktiven Substanzen.


Jutta Reising | idw
Weitere Informationen:
http://www.uni-muenster.de/Physik/PI/Zach/index.html

Weitere Berichte zu: Materialwissenschaft Mikroskopie Röntgenstrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie