Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alte Sterne erinnern sich an den Urknall

04.05.2001


Wissenschaftlern am Max-Planck-Institut für Astrophysik ist es gelungen, durch die Verknüpfung der modernsten Sternentwicklungsrechnungen mit Beobachtungen sehr alter Sterne die im Urknall erzeugte Menge von Lithium zu bestimmen, woraus sich die kosmologische Dichte gewöhnlicher Materie herleiten lässt.

Lithium (genauer: das Lithium-7 Isotop, dessen Kern aus 3 Protonen und 4 Neutronen zusammengesetzt ist) ist das schwerste Element, welches ausser Wasserstoff- und Helium-Isotopen im Urknall, also am Anfang des Universums, in nennenswerter Menge gebildet wurde. Wieviel von jedem dieser primordialen Elemente entstand, hängt wesentlich von der Dichte gewöhnlicher (baryonischer) Materie ab, d.h. von der Dichte von Neutronen und Protonen. Man kann diese Baryonen-Dichte bestimmen, wenn es gelingt, die primordialen Häufigkeiten von Deuterium (schwerer Wasserstoff), Helium, und Lithium-7 zu messen. Allerdings stellt sich die Frage, wo man in einem 14 Milliarden Jahre alten Universum danach suchen kann, wenn alle chemischen Elemente der Erzeugung, Vernichtung und Umwandlung in den "Fusionsöfen" der Sterne unterworfen sind?

Abbildung 1: Die beobachtete Lithium-7 Häufigkeit in galaktischen Sternen als Funktion des Metallgehalts. Die Häufigkeit ist in einem logarithmischen Massstab gegeben: ein Wert von 2 bzw. 3 entspricht einer Häufigkeit von 100 bzw. 1000 Lithium-Atomen pro 1 Billion Wasserstoff-Atomen. Die Metallskala ist ebenfalls logarithmisch und bezieht sich auf die Eisenhäufigkeit relativ zu der in der Sonne. Die Sonne (symbolisiert durch den Stern) hat somit definitionsgemäss einen Wert von 0; die metallärmsten Sterne mit einem Wert von -3 besitzen nur 1/1000 der solaren Metallhäufigkeit. Die Beobachtungsdaten stammen aus verschiedenen Quellen und wurden von Dr. S.G. Ryan (The Open University, Milton Keynes, England) freundlicherweise zur Verfügung gestellt. Das mittlere Niveau des Lithium-Plateaus ist durch die durchgezogene blaue Linie markiert, die gestrichelten Linien grenzen die Streuung um den Mittelwert ein.

Abbildung 1 zeigt Beobachtungsdaten von Lithium-7 als Funktion des gesamten Metallgehalts galaktischer Sterne. Unter "Metallen" verstehen Astrophysiker alle Elemente ausser Wasserstoff und Helium. Die Metallizitäts-Skala entspricht grob einer Alters-Skala: Die ältesten Sterne finden wir im linken Bereich bei sehr niedrigem, vor relativ kurzer Zeit entstandene Sterne rechts, bei hohem Metallgehalt. Dort befindet sich auch unsere Sonne, die eigens gekennzeichnet ist. Auf der rechten Seite sehen wir eine sehr starke Variation des Lithium-Gehalts. Das ist das Ergebnis der verschiedenen Kernprozesse in Sternen, die zur Erzeugung und Vernichtung von Lithium-7 führen.

Daher ist es umso erstaunlicher, dass im linken Teil der Abbildung ein konstanter Lithium-Gehalt erreicht wird, und die Streuung um diesen sehr klein ist. Die direkteste Interpretation dieses "Lithium-Plateus" ist, dass es sich hier um den gesuchten primordialen Gehalt handelt. Das ist auch im Hinblick auf die Tatsache plausibel, dass die entsprechenden Sterne als die ältesten Objekte in unserer Milchstrasse nicht lange nach dem Urknall entstanden sind.

Der Lithium-7 Wert des Plateaus entspricht nun einer bestimmten Baryonen-Dichte im Universum. Dieser Wert ist aber niedriger als der, den man benötigen würde, um die Menge an Deuterium im Urknall zu erzeugen, die man auf völlig andere Art und Weise und in ganz anderen Objekten bestimmen kann. Ausserdem ist dieser Wert noch sehr viel niedriger als derjenige, den man aus der kosmischen Mikrowellen-Hintergrundstrahlung (siehe Highlight vom August 2000) erhält. Wie kann man diese Diskrepanz zwischen den verschiedenen Ergebnissen bereinigen?

Abbildung 2: Wie Abbildung 1, wobei aber der Lithium-7 Gehalt der theoretischen Sternmodelle gezeigt ist. Gezeigt sind etwa 60 metallarme Sterne, wie sie auch in einer typischen Beobachtungsserie gemessen würden. Wie in Abbildung 1 sind mittlerer Wert und Streuung durch blaue Linien angedeutet. Die Plateau-artige Struktur ist klar sichtbar, obwohl auch einige Sterne Lithium-Häufigkeiten unterhalb des Plateaus haben. Dies sind die Sterne, in denen Sedimentation zu einer starken Herabsetzung des Oberflächenwertes geführt hat. Vergleicht man mit Abbildung 1, erkennt man, dass auch in den Beobachtungsdaten solche Ausreisser zu finden sind.

Eine mögliche Lösung wurde nun von M. Salaris (Liverpool John Moores University und MPA) und A. Weiss (MPA) gefunden. Die beiden Wissenschaftler haben die modernsten Sternmodelle benutzt, um Sterne des Lithium-Plateaus und die Entwicklung von Lithium-7 zu berechnen. Die Physik dieser Sterne beinhaltet auch das langsame Absinken schwererer Elemente von der Oberfläche ins Sterninnere (Sedimentation). Dadurch sinkt der Lithium-7 Gehalt an der Oberfläche, der durch die Beobachtungen gemessen wird, ab; allerdings ist der Effekt von Stern zu Stern wegen der unterschiedlichen Masse, chemischen Zusammensetzung, und des unterschiedlichen Alters der Sterne verschieden stark. Ausgehend von ihren Modellen simulierten die Autoren dann beobachtbare Eigenschaften (siehe Abbildung 2) und konnten zeigen, dass unter den derzeit gültigen Bedingungen für die Beobachtungen die Verminderung der Lithium-Oberflächenhäufigkeit doch für alle beobachteten Sterne beinahe konstant ist, so dass die Plateau-artige Struktur erhalten bleibt. Nur am metallärmsten Ende der Abbildung 2 zeigen sich einige wenige Sterne, deren Lithium-7 Gehalt stark unterhalb des Plateauwertes liegt. Das aber ist auch in den realen Beobachtungsdaten der Fall. Die Autoren sagen auch vorher, dass bei der Beobachtung von ca. 200 Sternen das unterschiedliche Absinken des Lithium-7 klar sichtbar werden sollte, und das Plateau nicht mehr länger existieren sollte.

Da das Absinken der Lithium-Oberflächenheeufigkeit aus den Modellen quantitativ bekannt ist, kann man nun daraus und aus dem Lithium-7-Wert des beobachteten Plateaus die primordiale Lithium-Häufigkeit rückrechnen. Der erhaltene Wert ist etwa doppelt so hoch wie der des Plateaus selbst und entspricht einer Baryonen-Dichte im Universum, die genauso hoch ist wie die aus den Deuterium-Beobachtungen. Sie liegt ausserdem innerhalb des Bereichs, den erst kürzlich analysierte Messungen des Mikrowellenhintergrunds erlauben. Die neuen Modelle lösen damit den Konflikt der unterschiedlichen Baryonendichten.

Die ältesten Sterne und die modernsten Sternmodell-Rechnungen zusammen erlauben somit wertvolle Rückschlüsse über die Bedingungen im Urknall und über die Zusammensetzung der Materie unseres Universums.


Achim Weiss




Weitere Informationen:
  • M. Salaris and A. Weiss, Atomic diffusion in metal-poor stars II. Predictions for the Spite plateau, Preprint MPA-1355e

Pressedienst |

Weitere Berichte zu: Beobachtungsdaten Häufigkeit Lithium-7 Urknall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise