Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiches Experiment zur Struktur der Marangoni-Konvektion unter Schwerelosigkeit

02.05.2001


Prof. Dr. Dietrich Schwabe vom I. Physikalischen Institut derJustus-Liebig-Universität Gießen führte Experiment durch - "Gute Möglichkeitenzur Überprüfung und Verbesserung existierender Theorien"

Sehr erfolgreich verlief ein 14-minütiges Experiment zur Struktur der Marangoni-Konvektion unter Schwerelosigkeit, das am 28. April 2001 auf der Höhenforschungsrakete MAXUS 4 auf ESRANGE bei Kiruna (Nordschweden) von Prof. Dr. Dietrich Schwabe vom I. Physikalischen Institut der Justus-Liebig-Universität Gießen durchgeführt wurde. Finanziert wurde das Experiment von der European Space Agency ESA und dem Bundesministerium für Bildung und Forschung (BMBF). Der erste Blick in die Daten verspricht, so Prof. Schwabe, interessante Ergebnisse.

Thermokapillare Konvektion wird in freien Schmelzenoberflächen durch dort herrschende Temperaturdifferenzen angetrieben, wie sie beispielsweise bei der Kristallzüchtung typisch sind. Thermokapillare Konvektion ist für den Stoff- und Wärmetransport wichtig, und bei der Kristallzüchtung sorgt ihre räumliche Struktur für Inhomogenitäten von Dotierstoff im Kristall und ihre zeitliche Struktur (Strömungsoszillationen) für Dotierstoffbänder (striations). Homogene Dotierung ist das Ziel - die Vermeidung konvektiver Strukturbildung in der Schmelze der Weg- und Kristallzüchtung bei kleinen Temperaturdifferenzen (unterhalb der Strukturbildungsschwelle) eine Möglichkeit. Dazu muss man die Mechanismen und die Schwelle der Strukturbildungsmechanismen verstehen bzw. kennen.

Der thermokapillare Antrieb und seine Einsatzschwelle für Oszillationen wirkt unabhängig von der Erdschwere (der Gravitation) und lässt sich daher in reiner Form unter Schwerelosigkeit studieren. Die Flüssigkeitszone - verwandt mit der "floating zone" aus der Siliziumeinkristalle für die Hochleistungsbauelemente der Halbleiterindustrie gezüchtet werden - ist dazu besonders geeignet. Sie ist ein Flüssigkeitszylinder mit freier Zylindermantelfläche, die an beiden Enden von z. B. Metallzylindern gleichen Durchmessers gehalten wird. Die beiden Metallzylinder werden auf verschiedene Temperatur gebracht und thermokapillare Konvektion mit einer Stärke angefacht, die der Temperaturdifferenz zwischen den Metallzylindern entspricht.

Prof. Schwabe und Norbert Kurmann vom 1. Physikalischen Institut der JLU untersuchen unter Schwerelosigkeit eine Flüssigkeitsbrücke an der Rayleigh-Grenze, d. h. mit einer Länge, die fünfmal größer ist als der Zonenradius. Ein solches Gebilde wird durch Oberflächenspannung stabil gehalten, aber nur unter Schwerelosigkeit ist eine so große Zonenlänge möglich. Stabile Zonen auf der Erde haben ein bedeutend kleineres Verhältnis von Länge zu Radius und sind darüber hinaus immer durch hydrostatischen Druck verformt.

Die lange Zone an der Rayleigh-Grenze hat den Vorteil, dass sich in ihr die wellenförmigen Störungen der thermokapillaren Konvektion auch in Achsenrichtung ausbreiten können, die bei kurzen Zonen auf der Erde durch die Endzylinder aus Metall unterdrückt werden. Die Gießener Wissenschaftler erwarten daher in der Zone an der Rayleigh-Grenze eine deutlich kleinere Temperaturdifferenz für den Oszillationseinsatz und hoffen, den Winkel der Wellenfronten zur Zonenachse messen zu können. Außerdem erwarten sie, neben der wellenförmigen Struktur, die Ausbildung von zwei bis drei Konvektionsrollen, die axial angeordnet sind, während auf der Erde die Zonen immer so kurz sind, dass nur eine thermokapillare Konvektionsrolle ausgebildet werden kann.

Die Beobachtungen und Messungen werden zu einer Überprüfung und der Verbesserung existierender Theorien führen, erklärt Prof. Schwabe nach dem erfolgreichen Verlauf des Experiments. Zum Beispiel berücksichtige die Theorie bisher nicht die mehrfachen axial angeordneten Konvektionsrollen, die alle den gleichen Drehsinn haben.

Kontakt:
Prof. Dr. Dietrich Schwabe


1. Physikalisches Institut der JLU Gießen
Heinrich-Buff-Ring 16
35392 Gießen

Tel.: 0641/99-33150
Fax: 0641/99-33119
E-Mail: Dietrich.Schwabe@physik.uni-giessen.de

Charlotte Brückner-Ihl | idw

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie