Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiches Experiment zur Struktur der Marangoni-Konvektion unter Schwerelosigkeit

02.05.2001


Prof. Dr. Dietrich Schwabe vom I. Physikalischen Institut derJustus-Liebig-Universität Gießen führte Experiment durch - "Gute Möglichkeitenzur Überprüfung und Verbesserung existierender Theorien"

Sehr erfolgreich verlief ein 14-minütiges Experiment zur Struktur der Marangoni-Konvektion unter Schwerelosigkeit, das am 28. April 2001 auf der Höhenforschungsrakete MAXUS 4 auf ESRANGE bei Kiruna (Nordschweden) von Prof. Dr. Dietrich Schwabe vom I. Physikalischen Institut der Justus-Liebig-Universität Gießen durchgeführt wurde. Finanziert wurde das Experiment von der European Space Agency ESA und dem Bundesministerium für Bildung und Forschung (BMBF). Der erste Blick in die Daten verspricht, so Prof. Schwabe, interessante Ergebnisse.

Thermokapillare Konvektion wird in freien Schmelzenoberflächen durch dort herrschende Temperaturdifferenzen angetrieben, wie sie beispielsweise bei der Kristallzüchtung typisch sind. Thermokapillare Konvektion ist für den Stoff- und Wärmetransport wichtig, und bei der Kristallzüchtung sorgt ihre räumliche Struktur für Inhomogenitäten von Dotierstoff im Kristall und ihre zeitliche Struktur (Strömungsoszillationen) für Dotierstoffbänder (striations). Homogene Dotierung ist das Ziel - die Vermeidung konvektiver Strukturbildung in der Schmelze der Weg- und Kristallzüchtung bei kleinen Temperaturdifferenzen (unterhalb der Strukturbildungsschwelle) eine Möglichkeit. Dazu muss man die Mechanismen und die Schwelle der Strukturbildungsmechanismen verstehen bzw. kennen.

Der thermokapillare Antrieb und seine Einsatzschwelle für Oszillationen wirkt unabhängig von der Erdschwere (der Gravitation) und lässt sich daher in reiner Form unter Schwerelosigkeit studieren. Die Flüssigkeitszone - verwandt mit der "floating zone" aus der Siliziumeinkristalle für die Hochleistungsbauelemente der Halbleiterindustrie gezüchtet werden - ist dazu besonders geeignet. Sie ist ein Flüssigkeitszylinder mit freier Zylindermantelfläche, die an beiden Enden von z. B. Metallzylindern gleichen Durchmessers gehalten wird. Die beiden Metallzylinder werden auf verschiedene Temperatur gebracht und thermokapillare Konvektion mit einer Stärke angefacht, die der Temperaturdifferenz zwischen den Metallzylindern entspricht.

Prof. Schwabe und Norbert Kurmann vom 1. Physikalischen Institut der JLU untersuchen unter Schwerelosigkeit eine Flüssigkeitsbrücke an der Rayleigh-Grenze, d. h. mit einer Länge, die fünfmal größer ist als der Zonenradius. Ein solches Gebilde wird durch Oberflächenspannung stabil gehalten, aber nur unter Schwerelosigkeit ist eine so große Zonenlänge möglich. Stabile Zonen auf der Erde haben ein bedeutend kleineres Verhältnis von Länge zu Radius und sind darüber hinaus immer durch hydrostatischen Druck verformt.

Die lange Zone an der Rayleigh-Grenze hat den Vorteil, dass sich in ihr die wellenförmigen Störungen der thermokapillaren Konvektion auch in Achsenrichtung ausbreiten können, die bei kurzen Zonen auf der Erde durch die Endzylinder aus Metall unterdrückt werden. Die Gießener Wissenschaftler erwarten daher in der Zone an der Rayleigh-Grenze eine deutlich kleinere Temperaturdifferenz für den Oszillationseinsatz und hoffen, den Winkel der Wellenfronten zur Zonenachse messen zu können. Außerdem erwarten sie, neben der wellenförmigen Struktur, die Ausbildung von zwei bis drei Konvektionsrollen, die axial angeordnet sind, während auf der Erde die Zonen immer so kurz sind, dass nur eine thermokapillare Konvektionsrolle ausgebildet werden kann.

Die Beobachtungen und Messungen werden zu einer Überprüfung und der Verbesserung existierender Theorien führen, erklärt Prof. Schwabe nach dem erfolgreichen Verlauf des Experiments. Zum Beispiel berücksichtige die Theorie bisher nicht die mehrfachen axial angeordneten Konvektionsrollen, die alle den gleichen Drehsinn haben.

Kontakt:
Prof. Dr. Dietrich Schwabe


1. Physikalisches Institut der JLU Gießen
Heinrich-Buff-Ring 16
35392 Gießen

Tel.: 0641/99-33150
Fax: 0641/99-33119
E-Mail: Dietrich.Schwabe@physik.uni-giessen.de

Charlotte Brückner-Ihl | idw

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik