Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach der geheimnisvollen "Dunklen Materie"

19.04.2001


Physiker der Universität Siegen beteiligen sich an dem internationalenSatellitenexperiment PAMELA, das in gut einem Jahr mit Hilfe einerrussischen Sojusrakete in eine polare Erdumlaufbahn gebracht werden soll.
Dieses Experiment soll dazu dienen, den unbekannten Teilchen der sog."Dunklen Materie" auf die Spur zu kommen.

Diese "Dunkle Materie" ist eines der großen Rätsel der heutigen Astrophysik und beschäftigt viele Wissenschaftler aus verschiedenen Bereichen der Physik.


Aufmerksam auf diese "Dunkle Materie" wurden die Astrophysiker als es gelang, die Bewegung von großräumigen Massenverteilungen innerhalb von Galaxien-Haufen zu vermessen. Es stellte sich nämlich heraus, dass ihre Bewegung nur erklärt werden konnte, wenn man eine zusätzliche Masse einführte, die nicht in den beobachtbaren Sternen vorhanden ist. Woraus sollte diese unbekannte Materie aber bestehen, die offenbar mehr als 90% der Gesamtmasse im Universum ausmacht, die sich aber nur durch ihre Gravitationskraft mitteilt, und ansonsten mit keinem Licht oder anderer Materie in Wechselwirkung tritt? Anregungen und Hinweise ergeben sich aus der Elementarteilchenphysik, die sich mit der Wechselwirkung von Teilchen und dem Austausch von Kräften beschäftigt. So passt es zu bestehenden Theorien, dass es sich hier möglicherweise um massereiche Teilchen handeln könnte, die nur sehr schwach mit dem Rest der Welt kommunizieren. Man nennt diese Teilchen "WIMP"-Teilchen (weakly interacting massive particles). Die Physiker haben auch schon Teilchen gefunden, die sich so verhalten, z.B. das Neutrino. Leider ist das Neutrino aber masselos bzw. besitzt nur eine sehr kleine Masse, so dass es für die "Dunkle Materie" nicht verantwortlich sein kann.
Eine Möglichkeit, diese WIMP-Teilchen aufzuspüren, besteht in der Wechselwirkung mit ihren Antiteilchen, deren Existenz die Elementarteilchenphysik erlaubt und die auch bei den bisher bekannten Elementarteilchen vorhanden sind. So ist z.B. das Antiproton das Antiteilchen des Protons oder das Positron das Antiteilchen des Elektrons. Wenn diese beiden Teilchen sich nahe kommen, wird ihre Masse in Energie verwandelt. Prozesse dieser Art werden heute in sehr praktischen Anwendungen genutzt, z.B. in der medizinischen Diagnostik.
Wenn WIMP-Teilchen mit ihren Antiteilchen in Berührung kommen, sollten ähnliche Prozesse zu erwarten sein. Die Folge wäre z.B. die Produktion von Antiprotonen wie auch Positronen, die dann vermehrt in der galaktischen Teilchenstrahlung zu finden sein sollten. Das PAMELA-Experiment ist speziell darauf ausgerichtet, nach diesen Antiprotonen und Positronen sehr sorgfältig zu suchen.

Mit einem Magnetspektrometer soll die Energie und die Häufigkeit der aus dem Weltraum einfallenden hochenergetischen kosmischen Antiprotonen wie Positronen präzise vermessen werden. Für die Entwicklung und den Bau von geeigneten Messdetektoren erhielten die Physiker in der Arbeitsgruppe um Prof. Dr. Manfred Simon bisher Fördermittel aus dem BMBF in Höhe von rd. 4 Millionen DM. In die Arbeiten sind Studierende, Diplomanden und Doktoranden eingebunden, deren Ausbildung dadurch eine besondere Qualität erfährt.
Der Beitrag der Siegener Physiker besteht in der Entwicklung und dem Bau von zeitlich hochauflösenden Detektoren, die es ermöglichen, die Flugzeit von Teilchen bei nahezu Lichtgeschwindigkeit mit einer Präzision von besser als einer Milliardstel Sekunde zu messen. Dies erfordert neue Entwicklungen in der Messtechnik unter Verwendung leistungsarmer Elektronik.
Erfahrungen und internationale Anerkennung beim Bau moderner astrophysikalischer Experimente haben sich die Wissenschaftler im Fachbereich Physik der Universität Siegen durch frühere Beteiligungen an Ballonexperimenten erworben, die sie gemeinsam mit Forschergruppen der NASA sowie aus Universitäten in den USA, Italien, Schweden und Indien durchgeführt haben.
Zur Zeit wird das PAMELA-Experiment in Rom aufgebaut und für den Flug im Weltraum vorbereitet. Es ist geplant, über einen Zeitraum von über drei Jahren wissenschaftliche Daten zur Erde zu senden. Die Siegener Wissenschaftler werden sich an allen Phasen dieses Projektes aktiv beteiligen, insbesondere auch an der wissenschaftlichen Auswertung der Messdaten.

Ullrich-Eberhardt Georgi | idw

Weitere Berichte zu: Antiproton Antiteilchen Materie Positron Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie