Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Giga-Datenbits mit Nano-Bauteilen superschnell transportieren

29.03.2004


Festkörperphysiker der Universität Jena jetzt in neues Europäisches Exzellenznetz eingebunden



"Mit Hochfrequenz" bedeutet, dass viel in kurzer Zeit passiert. Entwickelt man neue Hochfrequenzelemente für die Datenkommunikation, so will man damit noch größere Datenmengen in noch kürzerer Zeit übertragen. Dabei sollen die Bauelemente der Zukunft, die Computer oder Handys zu diesen Höchstleistungen befähigen, möglichst klein sein. Dieser nicht ganz trivialen Aufgabe wollen sich nun Forscher aus 14 europäischen Ländern gemeinsam widmen. Dazu haben sich 47 Forschergruppen, unter ihnen auch Festkörperphysiker der Friedrich-Schiller-Universität Jena, in dem neuen Exzellenznetz TARGET zusammengeschlossen.



Die Vernetzung europäischer Top-Forschergruppen in solchen Networks of Excellence (NoE) ist ein Hauptanliegen der Europäischen Union. Acht Millionen Euro investiert sie daher im Lauf von vier Jahren in den Aufbau der Infrastruktur des TARGET-Netzes. "An die Universität Jena fließen davon 104.000 Euro", berichtet Prof. Dr. Wolfgang Richter. Der Experimentalphysiker von der Uni Jena weiß, dass damit keine Forschungsprojekte finanziert werden. "Darum geht es bei den NoEs nicht, vielmehr sollen sich Gruppen mit ähnlichen Zielrichtungen in Teams zusammenfinden, um neue Projekte anzustoßen." Es geht darum, die Forschung in der EU international wettbewerbsfähig zu halten, z. B. indem teure Großgeräte gemeinsam genutzt werden, der Wissenschaftleraustausch angekurbelt wird und die Ausbildung von Nachwuchswissenschaftlern über Ländergrenzen hinweg erfolgt. Gemeinsam sollen Lehrmaterialien erstellt werden und gerade im Bereich der Datenkommunikation spielt auch die Vereinheitlichung von Software und Messtechnik eine große Rolle.

Richter selbst bringt sich in eine Untergruppe ein, die die Grenzen existierender Chip-Materialien ausloten und neue entwickeln will. "In den vergangenen Jahren sind die Bauteile immer kleiner geworden. Aus nanometerdünnen Schichten und kleinsten Strukturen werden Schaltkreise zusammengesetzt. Doch die derzeitigen Halbleiterbauelemente stoßen bald an ihre Grenzen", illustriert er das Problem. Schichten aus Siliziumcarbid, Galliumnitrid und Galliumarsenid wären potenzielle Kandidaten für die elektronische und optoelektronische Datenübertragung der Zukunft. Wie man solche Schichten generiert und ihre Funktionstüchtigkeit überprüft, diese Expertise bringen die Jenaer Physiker in das neue Exzellenznetz ein. "Wir können dabei an die Arbeiten des Sonderforschungsbereiches "Physik und Chemie optischer Schichten anknüpfen", sagt Richter.

Er erhofft sich von der Arbeit im NoE neue Denkanstöße. "Denn wir Wissenschaftler müssen der Industrie immer einen Schritt voraus sein, quasi erahnen, was morgen gebraucht wird. So etwas brütet man nicht im stillen Kämmerlein aus." Daher sind am neuen NoE auch viele Industriepartner beteiligt. "Nicht zuletzt eröffnen wir durch die Exzellenznetze unserem Nachwuchs neue Möglichkeiten", weist der Jenaer Physiker auf einen weiteren Aspekt hin. Prof. Richter ist im Steering Committee des NoE und damit einer von sieben Kapitänen, die TARGET von Jahrestagung zu Jahrestagung steuern.

Kontakt:
Prof. Dr. Wolfgang Richter
Institut für Festkörperphysik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947440
E-Mail: richter@pinet.uni-jena.de

Stefanie Hahn | idw
Weitere Informationen:
http://www.target-net.org

Weitere Berichte zu: Datenkommunikation Exzellenznetz NoE Target

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung