Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gibt es ein Tempolimit für das Denken?

08.03.2004


Abb.: Max-Planck-Forscher modellieren Hirnstrukturen als neuronale Netzwerke. Ihre neuesten Befunde zeigen, dass die komplizierte Verschaltungs-Struktur dieser Netzwerke zu einem Tempolimit für die Koordination der Netzwerkaktivität führt.

Bild: Max-Planck-Institut für Strömungsforschung


Göttinger Max-Planck-Forscher haben Geschwindigkeitsbeschränkung in komplexen neuronalen Netzwerken entdeckt


Die neuronalen Netzwerke im Gehirn bestehen aus einer Vielzahl ähnlicher Komponenten, die in scheinbar zufälliger Weise untereinander verbunden sind. Die Nervenzellen kommunizieren miteinander durch den Austausch von Pulsen über ihre Verbindungsstellen, die Synapsen. Doch anders als Atome in einem Kristall, die in einem regelmäßigen Gitter angeordnet sind, wachsen die synaptischen Verbindungen zwischen Nervenzellen hochgradig unregelmäßig. Neuro-Physiker des Göttinger Max-Planck-Instituts für Strömungsforschung und der Fakultät für Physik der Universität Göttingen sind jetzt der Frage nachgegangen, wie schnell sich die zahlreichen Komponenten eines komplexen Netzwerkes überhaupt koordinieren bzw. synchronisieren können. In Netzwerken pulsgekoppelter Oszillatoren, also einfachen Modellen neuronaler Netzwerke im Gehirn, entdeckten sie, dass die Geschwindigkeit der Synchronisation zwischen Nervenzellen eine obere Grenze hat, die von der Dichte ihrer Verschaltungen abhängt. (Physical Review Letters, 20. Februar 2004). Danach kann auch für die Informationsverarbeitung im Gehirn und unser Denken und Handeln eine Art Maximalgeschwindigkeit bestehen.

Um zu klären, welchen Einfluss die Struktur eines Netzwerks auf das kollektive Verhalten seiner Elemente hat, verwendeten die Göttinger Forscher die Theorie der so genannten Zufalls-Matrizen. Begründet durch Arbeiten von Eugene Wigner, der seinerzeit über Korrelationen zwischen Energieniveaus in Atomkernen arbeitete, wurde die Theorie der Zufalls-Matrizen seit den 1950er Jahren ausführlich untersucht. Seither hat sich der Anwendungsbereich dieser Theorie ständig erweitert und umfasst heute viele verschiedenartige Phänomene, die von quantenmechanischen Aspekten des Chaos bis hin zu Preis-Fluktuationen auf Finanzmärkten reichen.


Marc Timme, Fred Wolf und Theo Geisel haben nun gezeigt, dass die Theorie der Zufalls-Matrizen auch dafür geeignet ist, die Dynamik in komplexen Netzwerken zu analysieren. Dieses neuartige Herangehen erlaubt es, systematisch zu erforschen, welche Auswirkungen die Topologie, also die innere Struktur eines Netzwerks, auf seine Dynamik hat. Mit Hilfe der Zufalls-Matrix-Theorie haben die Göttinger Wissenschaftler mathematische Ausdrücke gefunden, mit deren Hilfe sich präzise bestimmen lässt, wie schnell Neurone ihre Aktivität koordinieren können, also auch, wie schnell sich neuronale Netzwerke synchronisieren können. Diese mathematischen Ausdrücke sagen die Abhängigkeit der Synchronisationsgeschwindigkeit von Eigenschaften einzelner Neurone wie auch von der Netzwerktopologie genau vorher.

Wie intuitiv zu erwarten war, fanden die Max-Planck-Forscher, dass Neurone sich umso schneller synchronisieren, je stärker die synaptischen Verbindungen zwischen ihnen sind. Überraschend zeigt diese Studie aber auch, dass es eine Geschwindigkeitsbeschränkung für die Synchronisation des Netzwerks gibt: Auch bei beliebig starken Wechselwirkungen kann die Synchronisationsgeschwindigkeit nicht schneller sein als eine maximale Grenzgeschwindigkeit. Dieses Tempolimit wird durch die komplizierte Verschaltungs-Struktur des Netzwerkes festgelegt und würde nicht auftreten, wenn jedes Neuron mit jeder anderen Nervenzelle in dem Netzwerk verbunden wäre. Diese Grenze für die Synchronisationsgeschwindigkeit beruht darauf, dass sogar dann, wenn nur ein einziges Neuron vom vollständig synchronen Verhalten des neuronalen Netzes abweicht, diese Information über das gesamte Netzwerk transportiert werden muss, bevor es wieder zu einer vollständigen Synchronisation kommt.

"Unter der Voraussetzung, dass diese Analyse die Schlüsselmechanismen zur Koordination der Aktivität in neuronalen Netzwerken des Gehirns qualitativ korrekt beschreibt, bedeutet dies, dass die Geschwindigkeit neuronaler Informationsverarbeitung, also unser Denken und Handeln, erheblich durch die Verschaltungs-Struktur des Netzwerks beschränkt wird", sagt Prof. Theo Geisel, Direktor am Max-Planck-Institut für Strömungsforschung. "So hat unsere Analyse gezeigt, dass in Zufallsnetzwerken die Synchronisationsgeschwindigkeit nur sehr langsam mit der mittleren Anzahl von Verbindungen pro Neuron zunimmt. Das bedeutet also, dass Hirn-Areale, in denen ein schneller Informationsaustausch essentiell ist, hochgradig vernetzt sein müssen, um ihre Funktion adäquat erfüllen zu können."

Originalveröffentlichung:

Marc Timme, Fred Wolf, Theo Geisel
Topological Speed Limits to Network Synchronization


Weitere Informationen erhalten Sie von:

Dr. Marc Timme
Max-Planck-Institut für Strömungsforschung, Göttingen
Tel.: 0551 5176-440
Fax: 0551 5176-409
E-Mail: timme@chaos.gwdg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/instituteProjekteEinrichtungen/institutsauswahl/stroemungsforschung/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt
21.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics