Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Polarisiertes Deuterium bringt Kernfusion auf Trab

11.08.2016

Physik: Gemeinsames deutsch-russisches Projekt

Polarisiertes Deuterium kann die Reaktionsrate in zukünftigen Fusionsreaktoren deutlich verbessern. Physiker rund um Prof. Dr. Markus Büscher vom Institut für Laser- und Plasmaphysik der Heinrich-Heine-Universität Düsseldorf (HHU) werden mit Kollegen vom Forschungszentrum Jülich und dem Budker-Institut in Russland eine neue Quelle für polarisierte Deuterium-Moleküle entwickeln. Das Projekt wird gemeinsam von der Deutschen Forschungsgemeinschaft (DFG) und der Russian Science Foundation (RSF) in den nächsten drei Jahren mit insgesamt mehr als 500.000 Euro gefördert.


Lamb-Shift-Polarimeter, gebaut am Forschungszentrum Jülich (Fotos: Ralf Engels)


Einsatz am Jülicher COSY-Beschleuniger: Atomstrahlquelle (senkrecht) mit dem dazugehörigem Lamb-Shift-Polarimeter.

In Fusionsexperimenten sollen die Atomkerne der Wasserstoffvarianten (Isotope) Deuterium und Tritium zu Heliumkernen verschmolzen werden, um dabei große Mengen Energie zu gewinnen. Diese Fusion findet nur unter extremen Bedingungen statt, die nur unter größtem Aufwand erzeugt werden können.

Physiker aus Düsseldorf, Jülich und vom russischen Budker-Institut – einem international bekannten Beschleunigerzentrum in Novosibirsk – wollen gemeinsam eine Anlage entwickeln, mit der die Wahrscheinlichkeit und damit die Reaktionsrate für diese Fusionsprozesse deutlich erhöht werden kann: Sie wollen in den nächsten Jahren eine Strahlquelle für kernspinpolarisierte Deuterium-Moleküle aufbauen.

Kernspinpolarisiertes Deuterium

Jeder Atomkern hat einen sogenannten Spin, der bei jedem Isotop zwar die gleiche Größe hat, aber – vereinfacht gesprochen – in unterschiedliche Richtungen weist. Bei „spinpolarisierten“ Kernen weisen diese Spins alle in dieselbe Richtung. Solchermaßen ausgewählte Kerne sind für Fusionsexperimente besonders interessant, da mit ihnen die Verschmelzungsrate deutlich – um rund 50 Prozent – erhöht werden kann. Damit steigt die Energieausbeute erheblich. Darüber hinaus haben Fusionsreaktionen spinpolarisierter Kerne eine besondere räumliche Charakteristik, die für den Bau von Reaktoren genutzt werden kann.

Neue Deuteriumstrahlquelle

Die Physiker wollen konkret polarisierte Deuterium-Moleküle gewinnen, die als verbesserter Treibstoff in der Kernfusion genutzt werden können. Dabei gehen sie einen neuen Weg: Statt polarisierte Deuteriummoleküle aus zwei polarisierten Deuteriumatomen herzustellen, die ihrerseits aus einer polari-sierten Atomquelle kommen müssen, starten sie direkt mit unpolarisiertem Deuteriumgas. Durchläuft ein Strahl unpolarisierter Deuteriummoleküle ein Magnetfeld, wird er entsprechend der Spineinstellung räumlich aufgespalten, so dass Moleküle mit dem gewünschten Spin direkt abgegriffen werden können. Im geplanten Experiment wählt man eine Magnetfeldanordnung, bei der Moleküle der gewünschten Polarisationsrichtung gebündelt werden, während andere Polarisationsrichtungen gestreut werden. Dieser Ansatz vereinfacht den Aufbau, erhöht die Effizienz der Trennung und damit den erzielbaren Teilchenfluss.

Die Expertise beim Aufbau der Trennapparatur, die mit supraleitenden Magneten arbeitet, liegt bei den russischen Projektpartnern am Budker-Institut. In Jülich wird ein spezielles „Lamb-Shift-Polarimeter“ aufgebaut, mit dem sich die Kernpolarisation sehr genau messen lässt, um die Quelle im Hinblick auf hohe Polarisationsausbeute zu optimieren. Weltweit wird es das fünfte Gerät seiner Art sein, wobei das Forschungszentrum Jülich allein vier der Geräte gebaut hat und somit weltweit führend in dieser Technologie ist. An der Heinrich-Heine-Universität Düsseldorf wird die Quelle schließlich in Laserexperimenten eingesetzt.

Zunächst soll gezeigt werden, dass der gewählte Ansatz funktioniert und dass der Aufbau in der Lage ist, polarisierte Wasserstoff- und später Deuterium-Molekülstrahlen mit einem hohen Fluss zu erzeugen. „Im Endeffekt wol-len wir die Quelle für Laser-Fusionsexperimente einsetzen“, so Prof. Dr. Markus Büscher vom Institut für Laser- und Plasmaphysik der Heinrich-Heine-Universität Düsseldorf. „Diese Messungen wollen wir am Düsseldorfer Hochleistungslaser ARCTURUS oder auch am PHELIX-Laser an der GSI in Darmstadt machen“, so Büscher weiter.

Gemeinsame deutsch-russische Forschungsförderung

Im Sommer 2015 startete die DFG gemeinsam mit der russischen Forschungsförderungsinstitution Russian Science Foundation (RSF) einen Aufruf zur Einreichung gemeinsamer Projekte von deutschen und russischen Wissenschaftlern in den Bereichen Physik, Mathematik und Weltraumwissenschaften.

Insgesamt 120 Anträge gingen ein. In einem Peer-Review-Verfahren wurden davon 14 besonders förderungswürdige Projekte identifiziert, die im Sommer 2016 an den Start gehen. Mit dabei ist das mit über 500.000 Euro ausgestattete Projekt „DFG-RSF: Entwicklung einer Molekül-Strahlquelle für polarisiertes Deuterium als Treibstoff für Fusionsforschung und andere Anwendungen“ Düsseldorfer, Jülicher und russischer Forscher.

Hintergrund: Kernfusionsreaktoren als mögliche Energiequelle der Zukunft

Mit Kernfusionsreaktoren will man das Sonnenfeuer kontrolliert auf die Erde holen und damit Energie erzeugen. Das Grundprinzip von Sonne und Reaktoren ist ähnlich: Bei sehr hohen Temperaturen werden die Atomkerne des Wasserstoffs zu schwereren Elementen, hier zunächst Heliumkernen, verschmolzen. Durch die sogenannte Massendifferenz zwischen den Aus-gangsprodukten und dem Endprodukt wird eine große Menge Energie frei.

Auch wenn es sich bei Fusionskraftwerken um kerntechnische Anlagen handeln wird, so haben diese gegenüber Kernspaltungsreaktoren einen ent-scheidenden Vorteil: Es kann zu keinen unkontrollierten Kettenreaktionen kommen, denn der Fusionsprozess stoppt sofort, sobald die künstlich hergestellten Bedingungen ausfallen. Zum anderen entstehen keine langlebigen radioaktiven Abfälle; zwar können auch Teile des Reaktors aktiviert werden, allerdings sind die Halbwertszeiten dabei so klein, dass die strahlenden Teile innerhalb weniger Jahre bis Jahrzehnte abklingen.

Man unterscheidet zwei Formen von Fusionsreaktoren: Plasmareaktoren mit Magneteinschluss und Trägheitsfusionsanlagen. Zu ersteren gehört der im französischen Cadarache in Bau befindlichen ITER (International Thermonuclear Experimental Reactor). Bei dieser Anlage soll erstmals mehr Energie erzeugt werden, als zur Herstellung der Reaktionsbedingungen verbraucht wird. Hierzu wird ein heißes, ionisiertes Gas aus den Wasserstoffisotopen Deuterium (bestehend aus einem Proton und einem Neutron) und Tritium (ein Proton, zwei Neutronen) erzeugt. Das mehrere 100 Millionen Grad Celsius heiße Plasma wird mittels starker Magnetfelder in einem großen Vakuumgefäß zusammengehalten. Bei Kollisionen bei den hohen Temperaturen überwinden die Wasserstoffkerne ihre elektrische Abstoßung und ver-schmelzen miteinander.

Bei Trägheitsfusionsanlagen wird eine kleine Brennstoffmenge mittels des gleichzeitigen Beschusses zum Beispiel mit Laserstrahlen erhitzt und extrem verdichtet (deutlich höher als in Plasmareaktoren). Hierdurch sollen entsprechende Bedingungen für das Zünden der Fusion entstehen.

In Deutschland gibt es unter anderem zwei große Plasma-Forschungsanlagen, die beide vom Max-Planck-Institut für Plasmaphysik betrieben werden: In Garching bei München steht der nach dem Tokamak-Prinzip arbeitende ASDEX-UPGRADE, in Greifswald der im Jahr 2015 in Betrieb genommene Wendelstein 7X, ein sogenannte Stellerator. Beide Anlagen unterscheiden sich durch die Form des einschließenden Magnetfeldes. Bis 2013 wurde darüber hinaus am Forschungszentrum Jülich das Tokamak-Experiment TEXTOR betrieben, welches – unter federführender Beteiligung Düsseldorfer Physiker – wichtige Erkenntnisse zur Wechselwirkung des heißen, eingeschlossenen Gases mit den Wänden des Vakuumgefäßes lieferte.

Kontakt Prof. Dr. Markus Büscher

Institut für Laser- und Plasmaphysik der HHU
Tel.: 0211 – 81 14960
E-Mail: markus.buescher@hhu.de

Peter Grünberg Institut
Forschungszentrum Jülich
Tel.: 02461 – 61 6669
E-Mail: m.buescher@fz-juelich.de

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten