Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakalte Atome im „Rydberg-Kleid“

10.08.2016

Wissenschaftler von MPQ (Garching) und MPIPKS (Dresden) haben eine neue Methode entwickelt, Atome über große Distanzen miteinander wechselwirken zu lassen.

Viele Eigenschaften der Alltagswelt lassen sich erklären, wenn man sich Atome als kleine, feste Kugeln oder Murmeln vorstellt, die sich nur spüren, wenn sie in direkte Berührung miteinander kommen. So ist zum Beispiel die Temperatur der uns umgebenden Raumluft das Ergebnis unzähliger, ständig ablaufender Kollisionen zwischen ihren Bestandteilen.


Abb. 1: Aus dem dicht mit Atomen gefüllten Startzustand (links) bildet sich durch die weit reichende Wechselwirkung eine Ringstruktur aus (rechts).

Grafik: MPQ, Abteilung Quanten-Vielteilchensysteme


Abb. 2: Die Art der Wechselwirkung lässt sich durch Licht kontrollieren, von winkelunabhängig (links und Mitte) zu winkelabhängig (rechts).

Grafik: MPQ, Abteilung Quanten-Vielteilchensysteme

Im Gegensatz dazu kennen wir aber auch Effekte, die sich aus dem Zusammenspiel zweier weit voneinander entfernter Gegenstände ergeben. Bekannte Beispiele dafür sind zwei Magneten, die sich auch in einiger Entfernung beeinflussen können, oder auch die durch elektrische Anziehung hervorgerufene Bildung eines Salzkristalles als regelmäßige Anordnung von positiv geladenen Natrium- und negativ geladenen Chlor-Ionen.

In der mikroskopischen Quantenwelt sind solche Beeinflussungen auf Distanz von besonderem Interesse, da sie grundlegende, bereits bekannte Phänomene wie die Bildung von geordneten Kristallen bewirken, aber auch neuartige, bisher nicht erforschte Zustände von Materie versprechen.

Darüber hinaus lassen sich solche langreichweitig wechselwirkenden Systeme auf fundamentaler Ebene theoretisch nur sehr schwer beschreiben, weshalb experimentellen Untersuchungen eine umso größere Bedeutung zukommt.

Nun hat ein Forscherteam um Dr. Christian Groß und Prof. Immanuel Bloch (MPQ Garching) in Zusammenarbeit mit Dr. Thomas Pohl (MPIPKS Dresden) eine neue Methode entwickelt, Atome über große Distanzen miteinander wechselwirken zu lassen. (Nature Physics, 1. August 2016). Kernelement ihrer Methode ist das sogenannte „Rydberg-dressing“, bei dem die fundamentale Eigenschaft der Quantenmechanik ausgenutzt wird, dass sich ein Quantenobjekt in zwei verschiedenen Zuständen gleichzeitig befinden kann.

Zur Veranschaulichung dieses Phänomens wird gerne die von dem theoretischen Physiker Erwin Schrödinger ersonnene Katze heran gezogen, die sich in einer abgeschlossenen Kiste in einer Überlagerung der Zustände „tot“ und „lebendig“ befindet. Auch im vorliegenden Experiment werden Atome in eine Überlagerung aus zwei Zuständen gebracht. „Der Trick bestand darin, neben dem energetisch niedrigsten Zustand einen hochangeregten „Rydberg-Zustand“ zu wählen“, erklärt Johannes Zeiher, Doktorand am Experiment.

„Diese exotischen Zustände zeichnen sich vor allem dadurch aus, dass der Durchmesser der Atome auf das ca. 1000 fache anwächst. Deshalb können sich Rydberg-Atome über große Distanzen beeinflussen.“ Der Haken dabei ist jedoch, dass Rydberg-Atome instabil sind und in sehr kurzer Zeit zerfallen. Doch auch diese Hürde umgehen die Wissenschaftler, indem sie die Überlagerung so einstellen, dass sich ein Atom nur mit einer sehr geringen Wahrscheinlichkeit im Rydberg-Zustand befindet. „Gewissermaßen erhält jedes Atom nur ein sehr dünnes „Rydberg-Kleid“, das von anderen, weit entfernten Atomen aber trotzdem wahrgenommen wird und diese auf Distanz beeinflussen kann“, erklärt Christian Groß, Leiter des Experimentes.

In ihrem Experiment erzeugten die Physiker zunächst mittels Laserkühlung ein ultrakaltes Gas aus Atomen des Alkali-Metalls Rubidium-87. Aus diesem Gas wurden ca. 200 Atome in ein sogenanntes optisches Gitter überführt, eine periodische Anordnung kleiner Lichtfallen, die aus der Überlagerung mehrerer Lichtstrahlen entsteht. Innerhalb einer Ebene ist jede dieser mikroskopisch kleinen Lichtfallen so dimensioniert, dass sie genau ein Atom aufnehmen kann.

Die resultierende Ordnung der Atome lieferte einen gut kontrollierten Startzustand für den nächsten, entscheidenden Schritt: der Erzeugung des Rydberg-dressing durch Bestrahlung der Atome mit hochintensivem ultraviolettem Laser-Licht. In diesem aus Licht gewobenen „Rydberg-Kleid“ begannen die Atome, sich auf die Distanz zu spüren und sich gegenseitig zu beeinflussen, ähnlich wie sich die Pole von zwei Magneten in der Alltagswelt abstoßen oder anziehen können. Ein entscheidender Unterschied im mikroskopischen System ist allerdings die Möglichkeit, diese Wechselwirkung durch das An- und Ausschalten des ultravioletten Lasers zu kontrollieren.

Für den Nachweis der so erzeugten langreichweitigen Wechselwirkungen wählten die Experimentatoren eine interferometrische Technik, die eine besonders empfindliche Vermessung des Systems zulässt. Dabei werden die „bekleideten Atome“, bei denen dem Grundzustand der Rydberg-Zustand überlagert ist, mit gewöhnlichen Atomen verglichen. Die gegenseitige Anziehung oder Abstoßung der Rydberg-Atome hinterlässt charakteristische Spuren im Interferenzmuster. Diese können die Physiker nachweisen, indem sie die Atome mittels eines sehr guten Fluoreszenz-Mikroskops einzeln in den Lichtfallen abbilden.

In einem ersten Experiment gelang der direkte Nachweis, dass sich die Atome über große Distanzen wahrnehmen. Infolgedessen wird das Verhalten jedes Atoms von allen seinen Nachbarn mitbestimmt. Abbildung 1 zeigt sowohl die Anfangsverteilung der ca. 200 Atome, die eine Scheibe gleichmäßig ausfüllen, als auch das sich ergebende Interferenzmuster für die Atome in Überlagerung mit dem Rydberg-Zustand. Der Rand des Systems tritt als Ringstruktur besonders hervor, weil den Atomen dort nach außen jeweils die Nachbarn fehlen.

Durch eine tiefere Analyse der Strukturen in den Interferenzmustern wurde die Wechselwirkung genauer vermessen und charakterisiert. Die Experimente bestätigten dabei mit großer Genauigkeit die theoretischen Vorhersagen. Ein besonders interessanter Effekt ist, dass mithilfe des Lichtes auch eine winkelabhängige Wechselwirkung erzeugt werden kann (Abbildung 2). Das bedeutet, dass sich zwei nebeneinander liegende Atome unterschiedlich wahrnehmen, je nachdem, ob sie z.B. von links nach rechts oder senkrecht dazu aufeinander folgen.

„Auch dieses Phänomen lässt sich auf makroskopischer Ebene bei zwei Magneten beobachten, die sich unterschiedlich stark abstoßen oder anziehen, je nachdem ob man sie neben- oder voreinander anordnet“, so Christian Groß. Bei Natrium- und Chlorid-Ionen hingegen liegt der Kristallbildung eine winkelunabhängige Wechselwirkung zugrunde. Diese einfachere Art der Wechselwirkung konnten die Physiker ebenfalls mit Laserstrahlen gezielt einstellen (Abbildung 2).

Den Forschungsgruppen um Immanuel Bloch, Christian Groß und Thomas Pohl ist es gelungen, eine neuartige Form der Wechselwirkung zwischen zwei Atomen zu induzieren und zu charakterisieren. Die Kontrolle über diese Wechselwirkung mithilfe von Licht öffnet die Tür zur Erforschung mikroskopischer Systeme, in denen Atome wie kleine Magnete wirken und miteinander über weite Entfernungen wechselwirken. Solche Systeme versprechen die Untersuchung einer großen Vielfalt spannender Phänomene, zum Beispiel auch eines bisher nicht experimentell nachgewiesenen „Super-Festkörpers“, der fest und flüssig zugleich ist. [JZ/OM]

Originalveröffentlichung:

Johannes Zeiher, Rick van Bijnen, Peter Schauß, Sebastian Hild, Jae-yoon Choi, Thomas Pohl, Immanuel Bloch, and Christian Groß
Many-body interferometry of a Rydberg-dressed spin lattice
Nature Physics, 1. August 2016, DOI: 10.1038/NPHYS3835

Kontakt:

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie