Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Atomlaser wird von Magnetfeldern nicht beeindruckt

18.12.2003


Aus einem besonderen Zustand der Materie, dem Bose-Einstein-Kondensat, lässt sich ein Atomlaser erzeugen. Doch bisher war mit den für die Anwendung interessanten Atomlasern nicht immer etwas anzufangen, weil sie empfindlich auf Magnetfelder reagieren. Dem Physiker Prof. Martin Weitz ist es mit einem Kunstgriff, einer "optischen Pinzette" und einem inhomogenen Magnetfeld, gelungen, Atomlaser zu erzeugen, die von Magnetfeldern unabhängig sind.



Tübinger Physiker veröffentlichen Forschungsergebnisse in den "Physical Review Letters"



Von Lasern ist immer häufiger die Rede. Sie tasten CDs beim Abspielen ab, helfen in der Medizintechnik beim Anschweißen der abgelösten Netzhaut im Auge oder bohren präzise auch winzige Löcher. Solche Laser funktionieren mit Licht. Im Gegensatz etwa zu einer Glühbirne produzieren Laser ein nahezu paralleles Lichtbündel aus Licht einer einzigen Farbe. Doch statt Licht lassen sich auch Atome zu einem Laser bündeln. Mit einem Atomlaser können Mikroskope mit besonders hoher Auflösung konstruiert werden oder auch Atominterferometer, mit denen sich zum Beispiel Gravitationsmessungen durchführen lassen. Allerdings waren Atomlaser in der Praxis bisher noch nicht gut einsetzbar, weil sie sehr empfindlich auf den Einfluss von magnetischen Streufeldern reagieren - und die sind praktisch überall. Jetzt ist es Prof. Martin Weitz vom Physikalischen Institut der Universität Tübingen mit seiner Forschergruppe, Giovanni Cennini, Gunnar Ritt und Carsten Geckeler, gelungen, einen Atomlaser zu konstruieren, der sich von Magnetfeldern nicht stören lässt. Die Ergebnisse ihrer einfallsreichen Experimente haben sie auch in der angesehenen Fachzeitschrift "Physical Review Letters" (Band 91, Nr. 24 vom 12. Dezember 2003) veröffentlicht.

Um einen Atomlaser herzustellen, braucht man zunächst ein Bose-Einstein-Kondensat. Das ist kein bestimmter Stoff, sondern ein besonderer Zustand der Materie, der weder als fest noch als flüssig oder gasförmig zu beschreiben ist und der bei sehr tiefen Temperaturen, dicht am absoluten Nullpunkt von minus 273,15 Grad Celsius, auftreten kann. Dass es einen Materiezustand gibt, bei dem alle Atome den gleichen Energiezustand annehmen, hatten der indische Physiker Satyendra Nath Bose und Albert Einstein bereits 1923 theoretisch berechnet. Doch erst 1995 ist es gelungen, Bose-Einstein-Kondensate auch im Experiment zu erzeugen. Dafür erhielten die beiden Amerikaner Eric Cornell und Carl Wieman sowie der gebürtige Deutsche Wolfgang Ketterle vom Massachusetts Institute of Technology (MIT) in Cambridge 2001 den Physik-Nobelpreis. "Materie kann man physikalisch gesehen als ungeordnete Wellen beschreiben. Wenn man die Materie immer weiter abkühlt, finden sich die kleineren Wellen schließlich zu einer Riesenwelle zusammen, in der sich die Atome völlig gleichförmig verhalten. Das wird als Bose-Einstein-Kondensat bezeichnet", erklärt Martin Weitz. Bildlich werden die Kondensate auch als "Atome im Gleichschritt" beschrieben, die - ähnlich wie disziplinierte Soldaten - alle das gleiche tun und nicht wild durcheinanderlaufen. Aus einem Bose-Einstein-Kondensat lässt sich ein Strahl von Atomen auskoppeln, ein Atomlaser. "Dass ein solcher Atomlaser empfindlich auf Magnetfelder reagiert, liegt daran, dass die Energie der Atome sozusagen "schwabbelt" wie das Wasser, wenn man in die Badewanne steigt", sagt Weitz. Münchner Forscher hätten dann mit Magnetfeldabschirmungen im Labor experimentiert, die aber sehr aufwendig seien. Die Tübinger Physiker wählten einen anderen Ansatz: Sie wollten die Atome senkrecht zu den Linien der Magnetfelder anordnen, denn in diesem Zustand werden sie vom Magnetfeld nicht beeinflusst. "Dieses Prinzip ist seit langem bekannt und wird zum Beispiel bei Atomuhren genutzt", sagt der Physiker.

Um Atome zu fangen, benutzen die Physiker, wie man es sonst bei Mäusen macht, eine Falle. "Bei den üblichen Magnetfallen wird ein inhomogenes Magnetfeld angelegt, bei dem die Feldlinien nicht gleichmäßig verlaufen", sagt Martin Weitz. Die Atome befänden sich dann in den drei so genannten Zeeman-Zuständen plus eins, null und minus eins. Doch nur im Zustand null stehen die Atome senkrecht zu den Magnetfeldlinien. Um an diese Atome heranzukommen, haben sich die Tübinger Wissenschaftler eine andere Vorgehensweise überlegt: Die Atome halten sie zunächst mit einer "optischen Pinzette" fest. Sie benutzen dafür Rubidium-Atome und einen fokussierten, also einen auf einen zentralen Punkt gerichteten Lichtlaser im Infrarotbereich als optische Dipolfalle. In dem Laserstrahl werden die Atome zu Dipolen, das heißt, die elektrischen negativen Ladungen sammeln sich auf der einen Seite des Atoms, die positiven auf der anderen. Die Rubidium-Atome werden durch das Laserlicht bereits stark gekühlt, wenn auch nicht stark genug, um ein Bose-Einstein-Kondensat zu erzeugen. "Wir hatten uns vorher in der Theorie überlegt, dass wir für dieses Experiment einen besonders stark fokussierten Laserstrahl benötigen, das war unser erster Trick bei dieser Sache", sagt Martin Weitz.

Noch immer hatten die Forscher unter den in der Pinzette festgehaltenen Atomen alle drei Zeeman-Zustände. "Während des Experimentierens sind wir dann darauf gekommen, dass wir nun zusätzlich ein inhomogenes Magnetfeld anlegen müssen, um die Atome im Zeeman-Zustand null von den anderen zu isolieren", erzählt der Wissenschaftler, wie sie auf den zweiten entscheidenden Trick kamen. Die Atome wurden nun weiter heruntergekühlt durch Erzeugung von Verdunstungskälte. "Dabei verdampfen die heißesten Atome am schnellsten, das sind die in den Zeeman-Zuständen plus eins und minus eins. Im Fokus des Lichtlasers befindet sich das Maximum des elektrischen Feldes, dort sammeln sich nun die gewünschten Atome im Zeeman-Zustand null", so der Forscher. Unterdessen werden beim weiteren Runterkühlen die Atome, die auch als Wellenpakete beschrieben werden können, immer länger. Bei 300 Nanokelvin, ganz dicht über dem absoluten Nullpunkt, entsteht aus den Wellenpaketen eine Riesenwelle, ein Bose-Einstein-Kondensat. Im Kondensat sind dann nur noch Atome im Zeeman-Zustand null, die sich von Magnetfeldern nicht beeindrucken lassen. Schließlich wird die optische Pinzette abgeschwächt, die Atome purzeln sozusagen in einem Strahl herunter - der Atomlaser ist fertig und von Magnetfeldern unabhängig.

Die lange Beschreibung entspricht allerdings nicht den Echtzeiten des Experiments: "In der optischen Pinzette können wir die Atome ungefähr fünf Sekunden festhalten, der Atomlaserstrahl mit 5000 bis 10 000 Atomen besteht 10 bis 20 tausendstel Sekunden", sagt Martin Weitz. Das ist sehr kurz, reicht aber für die ersten Versuche. "Das ist einfach eine Frage der Dimension. Für Anwendungen des Atomlasers braucht man ein größeres Bose-Einstein-Kondensat, also einen größeren Lichtlaser für die Vorkühlung der Atome", erklärt er. Die bisherige Grundlagenforschung liegt dicht an möglichen Anwendungen. Die Tübinger Physiker, die durch die Finanzierung eines Schwerpunktes der Landesstiftung inzwischen einen größeren Lichtlaser zur Verfügung haben, reizen jedoch auch grundlegende Forschungen: Sie wollen nun prüfen, ob sich die gewonnenen Erkenntnisse für den Bau eines besonders schnellen und leistungsfähigen Quantencomputers nutzen ließen. (6754 Zeichen)

Nähere Informationen:

Prof. Martin Weitz
Physikalisches Institut
Auf der Morgenstelle 14
72076 Tübingen
Telefon 07071/29762-65
Fax 07071/295829
E-Mail: martin.weitz@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.uni-tuebingen.de/uni/qvo/pd/pd.html

Weitere Berichte zu: Atomlaser Bose-Einstein-Kondensat Lichtlaser Magnetfeld

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?

21.02.2018 | Geowissenschaften

Der Fisch mit der Augenlampe

21.02.2018 | Biowissenschaften Chemie

Bakterien produzieren mehr Substanzen als gedacht

21.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics