Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Konzept für einen fortschrittlichen Fragmentseparator

16.12.2003


Ein neu entwickeltes und bereits getestetes System zur Fragmentseparation soll demnächst in der weltweit modernsten kernphysikalischen Experimentieranlage implementiert werden.


Die Atomphysik ist eine Wissenschaft, die sich hauptsächlich auf Experimente gründet. Fortschritte auf diesem Gebiet sind daher stark davon abhängig, ob es gelingt, die Leistungsfähigkeit der Anlageninstrumentierung zu verbessern. Angesichts der Vielfalt der nuklearen Phänomene und der entsprechenden Längen- und Energiemaßstäbe, bei denen wir sie beobachten, ist leicht einzusehen, dass viele fortschrittliche Versuchsinstrumentierungen eingesetzt werden müssen und stets Bedarf an innovativen Entwicklungen herrscht. Beschleuniger, Detektoren und die zugehörigen Elektronik- und Datenerfassungssysteme bilden hier seit jeher die Grundlage für große Erfindungen.

In diesem Kontext arbeitet ein Konsortium von Universitäten und Forschungszentren aus fünf europäischen Ländern an einem Projekt, dessen Ziel die Entwicklung einer fortschrittlichen neuen Versuchsanlage für Reaktionsstudien mit relativistischen radioaktiven Ionenstrahlen am GSI-Laboratorium in Darmstadt ist. Eines der Unterprojekte ist die Entwicklung eines Systems, das Techniken zum innovativen Handling von Strahlen ermöglicht. Konkret besteht das Ziel darin, ein Supraleitungssystem mit großer Energie- und Winkelakzeptanz zur Separation hochenergetischer Kernspaltungsfragmente zu entwickeln.


Gegenwärtig wird bei Experimenten der kernphysikalischen Grundlagenforschung auf dem Gebiet der subatomaren Teilchen ein hochenergetisches Teilchen auf ein dünnes Target geschossen, das dort in einer nuklearen Reaktion eine Fragmentierung verursacht. Die nuklearen Reaktionsprodukte werden auf ihrer Bahn separiert und als Sekundärstrahl zum Experiment transportiert. Nach dem neuen Konzept diffundiert der Sekundärstrahl aus radioaktiven Atomen aus dem hochgradig radioaktiven Target in die Ionenquelle, wo die Atome zur weiteren Beschleunigung im Nachbeschleuniger ionisiert werden. Die Separation der Fragmente ist von großer Bedeutung, da die Strahlqualität die Ergebnisse des Experiments beeinflussen kann.

Das neue System liefert eine exzellente Strahlqualität, denn es gestattet eine vollständige Kontrolle der Strahlenergie und der Einwirkungsdauer. Das System wurde mit mathematischen Modellen nach der Monte Carlo-Methode getestet. Wie sich dabei zeigte, erreicht es im Vergleich zum bestehenden Versuchsaufbau einen um mehr als eine Größenordnung höheren Separationswirkungsgrad für Sekundärstrahlen.

Das Separationssystem wird ein wesentlicher Bestandteil der weltweit einzigartigen Versuchsanlage sein. Die Experimente, die damit durchgeführt werden sollen, werden unser Wissen in der Atomphysik, der Astrophysik und den angewandten Wissenschaften weit über die heutigen Grenzen hinaus ausdehnen.

Kontakt:

GEISSEL, Prof. Hans Geissel
GSI, Planckstr. 1, 64291 Darmstadt
Tel: 06159-71-2740, Fax: 0-2902
Email: h.geissel@gsi.de

Hans Geissel | ctm
Weitere Informationen:
http://www.gsi.de

Weitere Berichte zu: Sekundärstrahl Separation Strahlqualität

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise