Können wir die dunkle Materie sehen?

Verteilung der Materiedichte des simulierten Milchstraßenhalos in logarithmischer Farbskala. Eine Bildkante entspricht einer Länge von 600000 Lichtjahren. Falls zukünftige Teleskope die Annihilationsstrahlung nachweisen, dann wahrscheinlich aus einer Region im Zentrum der Galaxie die nur einige Prozent der Größe des hier gezeigten Bildes hat.

Unsere Milchstraße ist, wie die meisten anderen Spiralgalaxien auch, von einem ausgedehnten Halo unsichtbarer dunkler Materie umgeben. Der Halo ist mindestens zehnmal größer und zehnmal schwerer als Teil den wir sehen können. Wissenschaftler am Max-Planck-Institut für Astrophysik haben Supercomputersimulationen der Entwicklung eines solchen Halos durchgeführt um die zu erwartende Struktur zu verstehen. Wenn die dunkle Materie aus Neutralinos besteht, dann könnte Gammastrahlung die bei deren Selbstannihilation entsteht mit Gammastrahlenteleskopen der nächsten Generation beobachtet werden. Die Astrophysiker fanden heraus, dass das geplante Teleskop GLAST gute Möglichkeiten besitzt diese Strahlung zu entdecken und damit die Natur der dunklen Materie zu enthüllen.

1933 untersuchte der schweizer Astronom Fritz Zwicky die Geschwindigkeiten von Galaxien in Galaxienhaufen und fand ein überraschendes Ergebnis: Die Masse der beobachteten Galaxien war viel zu gering um ihre Bewegungen in dem Galaxienhaufen zu erklären. Er schloss daraus, dass Galaxienhaufen neben den Galaxien noch aus weiterer, „dunkler“ Materie bestehen.

Heute wissen wir dass etwa 90% der Gesamtmasse im Universum nicht nur dunkel ist – das heißt sie sendet kein Licht aus – sondern dass sie außerdem aus einer mysteriösen noch unbekannten Teilchenart bestehen muss. Das Geheimnis der Natur der dunklen Matiere im Universum zu lüften ist eine der größten Herausforderungen der heutigen Kosmologie.

Einer der besten Teilchenkandidaten für die dunkle Materie ist ein Teilchen, das Neutralino genannt wird. Dieses Teilchen tritt auf natürliche Weise in Theorien auf, die das Standardmodell der Teilchenphysik erweitern. Diese supersymmetrischen Theorien führen eine neue Symmetrie ein – die Supersymmetrie -, die jedem Boson ein neues supersymmetrisches Fermion zuordnet, und umgekehrt. Bisher wurde noch keines der neuen Teilchen entdeckt. Es wird angenommen dass diese Teilchen zu große Energien besitzen als dass sie mit heutigen Teilchenbeschleunigern nachgewiesen werden könnten.

Die Neutralinos könnten jedoch mit sich selbst annihilieren wenn sie in dichten Regionen des Universums aufeinandertreffen und neben weiteren Teilchen auch hochenergetische Gammastrahlung produzieren. Die Idee ist nun zu versuchen diese Gammastrahlung nachzuweisen und so schliesslich die Natur des Teilchens der dunklen Materie und seine Masse zu bestimmen. Die Stärke der Annihilation der dunklen Materie hängt sehr stark von der Dichte der dunklen Matreie und damit von der genauen Struktur der Halos die unsere und andere Galaxien umgeben ab. Das Hauptaugenmerk für den Nachweis liegt dabei auf unserer Milchstraße, vorallem da ihr Zentrum „nur“ etwa 26000 Lichtjahre entfernt ist.

Die Wissenschaftlergruppe am MPA hat große Supercomputer des Garchinger Rechenzentrums der Max-Planck-Gesellschaft verwendet um die Entstehung eines Halos aus dunkler Materie ähnlich zu unserem eigenen mit bis jetzt unerreichter Auflösung zu simulieren (Abb 1). Sie haben für unterschiedliche Parameter der supersymmetrischen Theorie die erwartete Stärke der Gammastrahlung berechnet und diese mit den Nachweisgrenzen zweier Gammastrahlenteleskope der nächsten Generation verglichen. Eines dieser Teleskope ist ein Satellit (Abb 2. obere Illustration: The Gamma Ray Large Area Space Telescope GLAST) das andere ein erdgebundenes Teleskop (Abb 2. untere Illustration: Very Energetic Radiation Imaging Telescope Array System VERITAS).

Sie fanden heraus, dass, mittels einer neuen Nachweisstrategie die nach Gammastrahlung aus einem grossen Bereich zehn oder zwanzig Grad vom galaktischen Zentrum entfernt sucht, GLAST eine gute Chance haben wird die Gammastrahlen zu entdecken (Abb 3). Wir könnten endlich in der Lage sein die dunkle Materie zu „sehen“ und ihre immer noch mysteriöse Natur zu enthüllen.

Media Contact

Felix Stoehr Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpa-garching.mpg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mehr Prozess- und Produktinnovationen in Deutschland als im EU-Durchschnitt

Mehr als jedes 3. Unternehmen (36 %) in Deutschland hat zwischen 2018 und 2020 (aktuellste Zahlen für die EU-Länder) neue Produkte entwickelt, Neuerungen von Wettbewerbern imitiert oder eigene Produkte weiterentwickelt….

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Partner & Förderer