Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Akustische Bildgebung mit Umrisserkennung

22.09.2015

Wissenschaftler der ETH Zürich haben eine neue Methode entwickelt, um sehr schwache und kurze Schallwellen von längeren zu unterscheiden. Der Einsatz ihrer Technik in der akustische Bildgebung ermöglicht es, bei Objekten spezifisch nur Umrisse zu erkennen.

Mit zurückgeworfenem Schall kann man Objekte sichtbar machen: In der Schifffahrt liefert das Echolot Informationen zum Meeresboden oder zu Fischschwärmen, und Gynäkologinnen nutzen Ultraschallbilder, um Ungeborene im Mutterleib zu untersuchen. Ebenfalls auf Ultraschall basieren Materialprüfungsverfahren, mit denen Eisenbahnschienen oder die Tragelemente von Flugzeugen regelmässig auf Risse untersucht werden.


Kantenbild des ETH-Schriftzugs. (Bild: Molerón M et al. Nature Communications 2015)

Forschende der ETH Zürich entwickelten nun eine neue Art von akustischer Bildgebung – eine, die nicht ein ganzes Objekt fotorealistisch wiedergibt, sondern nur dessen Konturen und Kanten. «Das Resultat dieser Art von Messung ist vergleichbar mit dem Effekt, den man mit dem Kantenerkennungsfilter von Bildbearbeitungssoftware erzielt:

Per Mausklick können dort die Umrisse von markanten Objekten auf Fotos erkannt werden», erklärt Chiara Daraio, Professorin für Mechanik und Materialien. Bloss basiert ihre Methode nicht auf Software, sondern sie filtert die Information zu den Konturen bereits während der akustischen Messung heraus.

Um das Funktionsprinzip des akustischen Kantenerkennungsfilters zu verstehen, muss man wissen, dass Schallwellen an Kanten auf bemerkenswerte Weise reflektiert werden: Es entstehen dort sogenannte evaneszente Wellen. Diese haben eine deutlich kürzere Wellenlänge als die einfallenden Schallwellen, die sie erzeugten.

Ausserdem zerfallen evaneszente Wellen während ihrer Ausbreitung rasch. Sie sind daher nur im Nahbereich dieser Kanten messbar. Zwar gab es schon bisher Methoden, diese Wellen zu messen. Den ETH-Forschenden ist es nun aber gelungen, die evaneszenten Wellen mit einer neuen Methode zu verstärken und vom «normal» reflektierten, längerwelligen Schall zu unterscheiden.

Resonanz-Struktur aus dem 3D-Drucker

Kernstück der Methode ist eine neue Polymer-Struktur, die Miguel Molerón, Postdoc in Daraios Gruppe, entwickelte und auf einem 3D-Drucker herstellte. Es handelt sich dabei um ein Rohr mit quadratischem Querschnitt. Im Innern ist es in fünf nebeneinanderliegende Resonanzkammern unterteilt. Kleine Fenster verbinden die Kammern miteinander. «Diese Struktur verstärkt über die Resonanz die evaneszenten Wellen. Durch den regelmässigen gekammerten Aufbau werden die längeren Wellen herausgefiltert», erklärt Molerón. Am Kopfende der Struktur messen vier Mikrofone den übertragenen Schall.

Um ein Umrissbild von einem Objekt zu erstellen, beschallten die Wissenschaftler das Objekt über einen Lautsprecher mit einem Ton einer bestimmten Frequenz. Auf einem Roboter befestigten sie die Polymer-Struktur mit den Mikrofonen sehr nahe an der Objektoberfläche. So scannten sie systematisch die ganze Oberfläche. Aus der gemessenen Schall-Information konnten sie das Umrissbild erzeugen.

Schnell das Relevante erkennen

Nach Auskunft der Wissenschaftler bringt die neue Messmethode überall dort Vorteile, wo es nicht darum geht, von einem Objekt ein perfektes Bild zu erhalten, sondern wo man möglichst schnell relevante Objektinformationen erfassen muss. «Wir haben eine Methode der akustischen Bildgebung geschaffen, bei der nicht benötigte Information gar nicht erst erfasst wird», sagt ETH-Professorin Daraio. «Um beispielsweise Objekte anhand ihrer Form und Grösse zu klassifizieren, reichen Umrisse und Kanten aus. Ebenso, um Risse oder oberflächliche Materialfehler erkennen zu können», ergänzt Postdoc Molerón.

Bei der Arbeit der ETH-Forschenden handelt es sich um eine Machbarkeitsstudie. Um sie anwendungsreif zu machen, bedarf es noch weiterer Entwicklung. Für die Studie benutzten die Wissenschaftler Schall im hörbaren Bereich. Interessant wäre jedoch auch, die Methode für den kürzerwelligen Ultraschall-Bereich anzupassen. «Da die Ausmasse der Polymer-Struktur auf die Wellenlänge abgestimmt sein muss, müssen wir dazu die Struktur miniaturisieren. Wir wollen nun herausfinden, wie weit wir dabei gehen können», sagt Molerón. Sein Ziel ist, die akustische Bildgebung zu verbessern – für mögliche Anwendungsgebiete in der biologischen Forschung oder der Medizin.

Literaturhinweis

Molerón M, Daraio C: Acoustic metamaterial for subwavelength edge detection. Nature Communications, 25. August 2015, doi: 10.1038/ncomms9037 [http://dx.doi.org/10.1038/ncomms9037]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/09/akustische...

Fabio Bergamin | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: 3D-Drucker ETH Kanten Roboter Schallwellen Ultraschallbilder Umrisse Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie