Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Berechnungsdaten für Hochintensitäts-Beschleuniger der Zukunft

02.12.2003


Die Auswahl des Targets ist ein entscheidender Parameter für die Auslegung von Versuchsanlagen für die kernphysikalische Forschung. Zur Auswahl des besten Targets für ein neues Versuchszentrum wurden deshalb zahlreiche Werkstoffe, Abmessungen, Wärmeableitverfahren und Temperaturprofile berechnet und simuliert.



Zur Erforschung der Eigenschaften und der Natur subatomarer Teilchen werden in modernsten High-Tech-Versuchsanlagen komplizierte Experimente durchgeführt. Da diese Teilchen extrem klein sind, besteht die einzige Möglichkeit zur Untersuchung ihres Verhaltens darin, größere Materiestücke zu studieren, die Millionen von ihnen enthalten. Dazu wird ein Strahl von kleinen Teilchen wie z.B. Protonen beschleunigt und auf ein Target geschossen. Durch dieses Bombardement überwinden einige der untersuchten Teilchen ihre Bindungskräfte und bilden nach einer speziellen Manipulation einen Sekundärstrahl.



Eine Gruppe von europäischen Forschungszentren und Universitäten, die sich mit der Entwicklung eines der weltweit fortschrittlichsten Versuchszentren für die Atomphysik beschäftigt, hat jetzt intensiv unter anderem die Targets studiert, die in dieser Anlage verwendet werden sollen, da diese Komponenten im Gesamtexperiment eine entscheidende Rolle spielen. Die Hauptziele bestanden in der Ermittlung der Eigenschaften des Targets selbst bei Freisetzung hoher Energien sowie in der Auswahl des optimalen Verfahrens zur Wärmeableitung.

Das Target gehört zu den Hauptfaktoren, die in Korrelation mit dem Primärstrahl die Sekundärstrahltypen regulieren. Entscheidende Parameter sind das Material, aus dem das Target besteht, ferner sein Aggregatzustand (flüssig oder fest) sowie die Dicke und die Abmessungen des Targets. Ein weiteres wichtiges Problem, das die Wirksamkeit und Funktionalität des Targets beeinflusst, ist die Abführung der entstehenden Wärme. Beim Eindringen des Strahls in das Target entsteht thermische Energie, die das Material auf mehrere hundert Grad erhitzt. Diese Materialerwärmung verursacht thermische Spannungen, die groß genug sein können, um zu einem Ausfall des Materials zu führen.

Die Forschungsgruppe berechnete im Detail die Temperaturprofile für die verschiedenen Betriebsarten, die für den künftigen Hochintensitäts-Beschleuniger vorgesehen sind. Diese Berechnungen wurden unter Berücksichtigung aller denkbaren Extremfälle durchgeführt. Die Ergebnisse sowie die vorgeschlagenen Target-Lösungen werden in sechs Berichten beschrieben, die von der Projekt-Website abgerufen werden können.

Kontaktangaben

Dr. Patricia Roussel-Chomaz
GANIL, BP5027
14021 Caen, Frankreich
Tel: +33-231-454556
Fax: +33-231-45-4421
Email: patricia.chomaz@ganil.fr

Dr. Patricia Roussel-Chomaz | ctm
Weitere Informationen:
http://www.ganil.fr
http://www-land.gsi.de/r3b

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise