Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenradioteleskop entsteht im Herzen Europas

01.12.2003


Finanzierung des digitalen Radioteleskops LOFAR gesichert / 25.000 über ultraschnelles Internet verbundene Sensoren ermöglichen Suche nach den Anfängen des Universums


Abb.: 350 Kilometer im Durchmesser - das ist die geplante räumliche Ausdehnung des LOFAR-Teleskops, das mit Zentrum in Borger-Odoorn/NL, 25 Kilometer westlich der deutsch-niederländischen Grenze entsteht und sich auch auf das Gebiet von Niedersachsen und Nordrhein-Westfalen erstrecken wird.
Bild: LOFAR (http://www.lofar.nl)



50 Millionen Euro für den Bau des digitalen Radioteleskops LOFAR Low Frequency Array) im Norden Mitteleuropas erhält ein internationales Konsortium unter Führung des holländischen Instituts ASTRON in Dwingeloo, hat das holländische Kabinett in seiner Sitzung am 28. November 2003 beschlossen. Damit ist die Finanzierung für wesentliche Teile des kreisförmigen "Riesenauges" gesichert, das ab 2004 im Norden Hollands gebaut wird und sich mit einem Durchmesser von 350 Kilometer bis nach Deutschland ausdehnen soll. Das Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn ist mit wesentlichen Vorarbeiten an der Entwicklung von Prototypen beteiligt. LOFAR ist ein revolutionäres Radioteleskop der nächsten Generation. Es besteht aus 25.000 einfachen Radiosensoren, die über ein ultraschnelles Internet mit einem zentralen Supercomputer verbunden sind. Das Teleskop kann in mehrere Richtungen gleichzeitig schauen und in Sekundenbruchteilen seine Sehrichtung beliebig ändern.



"Dies ist ein wichtiges Signal für die Zukunft der Radioastronomie in Europa und ein erster Schritt hin zu der nächsten Generation neuartiger Instrumente," sagt Dr. Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie und Mitglied im Leitungsgremium des internationalen Square-Kilometer-Array Projekts (SKA). "Radioastronomen aus der ganzen Welt arbeiten im Moment zusammen, um im nächsten Jahrzehnt gemeinsam über ein Teleskop mit der äquivalenten Sammelfläche eines Quadratkilometers zu verfügen - diesem Ziel sind wir nun ein schönes Stück näher."

Das LOFAR-Teleskop beruht auf der modernen "Phased-Array"-Technologie, die es erlaubt, ein vollständig steuerbares Teleskop komplett ohne bewegliche mechanische Teile zu erbauen. Das Teleskop besteht aus 25.000 einfachen Radioantennen (Dipolen), die - in 100 Stationen zusammengefasst - über eine kreisförmige Fläche mit 350 km Durchmesser verteilt sind. Die Antennen verfügen über digitale Radioempfänger, die über ein Internet-System der nächsten Generation (Internet 2) mit einer Bandbreite von 10 Terabit pro Sekunde die Weltraum-Signale an einen zentralen Superrechner in Echtzeit übertragen, wo sie dann ausgewertet werden. Der Aufbau dieses Hochgeschwindigkeitsnetz mit Datenraten weit jenseits des heutigen Internets ist zugleich von erheblicher Bedeutung für weitere wissenschaftliche und wirtschaftliche Anwendungen.

Wie ein gigantisches Fischauge hat das Teleskop dabei den gesamten Himmel im Blick. Das fertige Radiobild wird jedoch erst im Computer aus den Informationen der einzelnen Antennen erzeugt. Das virtuelle Teleskop im Rechner kann dadurch in mehrere Richtungen gleichzeitig schauen ("Multi-Beaming") und in Sekundenbruchteilen die Sehrichtung ändern. "Dieses Teleskop ist ein radikaler Bruch mit bisherigen Konzepten und gibt uns eine Flexibilität, die in der Astronomie ihresgleichen sucht," betont Professor Heino Falcke, "Senior Scientist LOFAR" bei ASTRON. "Damit erreichen wir eine um den Faktor 1000 höhere Empfindlichkeit und Sehschärfe im Vergleich zu allem, was bisher im Frequenzbereich von LOFAR möglich war - es wird viel Neues zu entdecken geben."

Der Frequenzbereich des Teleskops liegt bei langen Radiowellen zwischen 10 und 200 Megahertz. Dieser Bereich ist besonders interessant, weil man hier die Strahlung des Wasserstoffatoms aus dem frühen Universum beobachtet. Denn die bekannte "21 Zentimeter-Linie" des atomaren Wasserstoffs bei 1400 Megahertz wird durch die schnelle Expansion des frühen Universums um einen Faktor z=10-20 in den Frequenzbereich von LOFAR verschoben. Damit ist es möglich, die allererste Generation von Sternen und Schwarzen Löchern im Universum zu entdecken und das so genannte "Zeitalter der Reionisation" zu untersuchen. Dieses noch ziemlich unerforschte Zeitalter in der Geschichte des Universums markiert den historischen Übergang vom Chaos des Urknalls zu den ersten makroskopischen Objekten, also Planeten, Sternen, Galaxien, Schwarzen Löchern etc., die noch heute das Bild des Universums bestimmen. Weitere Forschungsthemen sind die Suche nach explodierenden Radioquellen, die Entwicklung von Galaxien und Schwarzen Löchern im gesamten Universum, das Studium der Sonne, des Sonnensystems und der Erdatmosphäre sowie die Suche nach hochenergetischen kosmischen Teilchen.

Projektträger für LOFAR ist das holländische Institut ASTRON, Betreiber des Radioobservatoriums Westerbork. Das Max-Planck-Institut für Radioastronomie in Bonn hat sich in Kooperation mit verschiedenen deutschen Hochschulinstituten im Rahmen des Projekts LOPES (Abkürzung für "LOfar PrototypE Station") an der Entwicklung und dem Test von Antennen-Prototypen beteiligt, die bei LOFAR verwendet werden sollen. Das Projekt LOPES, das am Max-Planck-Institut für Radioastronomie von Heino Falcke betreut wird, wurde im Rahmen der Verbundforschung "Astroteilchenphysik" seit dem Jahr 2001 vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Seit Sommer 2003 werden die ersten Prototyp-Antennen für LOFAR im Forschungszentrum Karlsruhe getestet und zeichnen dort die Radiostrahlung hochenergetischer kosmischer Teilchen in der Atmosphäre auf.

Zum LOPES-Konsortium gehören die Universität und das Forschungszentrum Karlsruhe, das Institut für Experimentalphysik der Universität Wuppertal, die KASCADE-Grande Kollaboration, das Radioastronomische Institut der Universität Bonn, das Astronomische Institut der Universität Bochum und das I. Physikalische Institut der Universität Köln. Weitere an LOFAR beteiligte deutsche Gruppen sind die International University Bremen und der Bereich Solare Radioastronomie am Astrophysikalischen Institut Potsdam.

"Dies ist auch ein gelungenes Stück deutsch-niederländischer Zusammenarbeit", freut sich Eugene de Geus, Generaldirektor von ASTRON. "Wir profitieren von der Erfahrung und dem Engagement der deutschen Radioastronomen und gemeinsam werden wir das Teleskop wissenschaftlich ausnutzen."




Prof. Heino Falcke
Max-Planck-Institut für Radioastronomie und ASTRON, Bonn und Dwingeloo
Tel.: 0178 5672532 oder: +31 651433474
Fax: +31 521 595-332
E-Mail: falcke@astron.nl


Dr. Rolf Schwartz
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-303
Fax: +49 228 525-438
E-Mail: rschwartz@mpifr-bonn.mpg.de


Dr. Norbert Junkes
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-399
Fax: +49 228 525-438
E-Mail: njunkes@mpifr-bonn.mpg.de


Dr. Eugene de Geus (Direktor ASTRON) oder Mark Bentum (Öffentlichkeitsarbeit)
ASTRON, Dwingeloo, The Netherlands
Tel.: +31 625018057 oder +31 521 595 213
Fax: +31 521 595 332
E-Mail: bentum@astron.nl

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2003/pressemitteilung20031201/
http://www.mpg.de/instituteProjekteEinrichtungen/institutsauswahl/radioastronomie/index.html
http://www.astron.nl/

Weitere Berichte zu: ASTRON Frequenzbereich LOFAR Radioteleskop Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie