Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirkungsgrad von "Quantenmaschinen" ausgelotet

01.12.2003


Eine Dampfmaschine ist um so besser, je mehr Arbeitsleistung sie aus einer gegebenen Brennstoffmenge herausholen kann. Der maximal mögliche Wirkungsgrad jeder Maschine ist jedoch durch Naturgesetze beschränkt. Dies gilt auch für die Effizienz von "Quantenmaschinen", bei denen bestimmte Quantenzustände gezielt in andere Quantenzustände überführt werden sollen.



Bisher war aber unbekannt, wie groß der bestmögliche Wirkungsgrad von Quantenmaschinen in der Praxis sein kann. Wissenschaftler der Technischen Universität München und der Harvard University entdeckten nun fundamentale Grenzen für die Effizienz von solchen Systemen unter realistischen Bedingungen und konnten an einem Modellsystem die vorhergesagte maximal mögliche Ausbeute auch experimentell realisieren.



Die gezielte und möglichst verlustarme Steuerung von Quantenzuständen spielt bereits heute eine entscheidende Rolle bei modernen spektroskopischen Verfahren. So wird etwa bei der Kernresonanz-Spektroskopie zur Strukturbestimmung von großen Biomolekülen der Quantenzustand des Spins von Atomkernen durch Einstrahlen von Radiowellen in einem starken Magnetfeld auf andere Atome übertragen. Darüber hinaus sind Manipulationen von Quantenzuständen eine wesentliche Voraussetzung für die Realisierung von Zukunftstechnologien, wie etwa der Quanteninformations-Verarbeitung. Quantenzustände können jedoch nie ohne Verluste manipuliert werden, da sie nicht vollständig von ihrer Umgebung isolierbar sind. Dieser "Informationsverlust" an die Umgebung wird Relaxation oder Dekohärenz genannt und ist etwa vergleichbar mit Reibungsverlusten bei mechanische Maschinen.

Obwohl die Quantenmechanik bereits über 100 Jahre alt ist, war die Frage nach dem bestmöglichen Wirkungsgrad einer "Quantenmaschine" in Gegenwart von Relaxation bisher ein ungelöstes Problem. Dies ist vergleichbar mit der Zeit vor der Entdeckung der fundamentalen Grenzen für den Wirkungsgrad, mit der eine Dampfmaschine Wärme in mechanische Arbeit überführen kann. Mehr als 100 Jahre nach Erfindung der Dampfmaschine war dies ebenfalls noch eine ungeklärte Frage: "Trotz mannigfaltiger Arbeiten über die Wärmemaschinen, ... ist ihre Theorie doch sehr wenig fortgeschritten, und die Versuche zu ihrer Verbesserung sind fast nur vom Zufall geleitet", schrieb Sadi Carnot 1824. Heute ist klar, dass die maximal mögliche Effizienz einer Wärmekraftmaschine nicht durch die Findigkeit der Ingenieure, sondern durch die fundamentalen Gesetze der von Carnot mitbegründeten Thermodynamik gegeben ist.

Mit dem von Prof. Navin Khaneja (Harvard), Dr. Burkhard Luy und Prof. Steffen Glaser (TU München) in der aktuellen Ausgabe der Proceedings of the National Academy of Science (USA) vorgestellten Verfahren können nun erstmals die physikalischen Grenzen für die Manipulation von Quantenzuständen in Gegenwart von realistischen Relaxationseffekten theoretisch bestimmt werden. Zu ihrem Erstaunen fanden die Wissenschaftler, dass die Effizienz bisher üblicher Methoden noch weit unterhalb dieser bisher unbekannten Grenzen liegt.

Die Forschergruppe aus Harvard und München konnte ihre Erkenntnisse auch praktisch umsetzen und den Wirkungsgrad einer einfachen Quantenmaschine bis zum maximal erreichbaren Wert steigern. In Experimenten am Bayerischen Kernresonanz Zentrum in Garching optimierten sie die Übertragung von Kernspinzuständen in einem organischen Molekül (ein Salz der Ameisensäure) durch die Einstrahlung von Radiowellen nach einem neuartigen Verfahren. Diese Technik verspricht, die Kernresonanz-Spektroskopie von Biomolekülen wesentlich schneller und empfindlicher zu machen und somit Strukturen der großen Moleküle leichter zu entschlüsseln.


Originalveröffentlichung: Boundary of quantum evolution under decoherence
N. Khaneja, B. Luy, S. Glaser, Proc. Natl. Acad. Sci. USA 100, 13162-13166, 2003.


Kontakt:
Prof. Dr. Steffen Glaser,
TU München
Institut für Organische Chemie und Biochemie,
Lichtenbergstr. 4, 85747 Garching,
Tel. 089 / 289-13759, Fax 289-13210
glaser@ch.tum.de

Dieter Heinrichsen | idw

Weitere Berichte zu: Effizienz Quantenzustand Quantenzustände Wirkungsgrad

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie