Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"DUO" soll Licht ins Dunkle Universum bringen

20.11.2003


NASA plant "Dark Universe Observatory" (DUO) mit einem vom Max-Planck-Institut für extraterrestrische Physik entwickelten Röntgenteleskop


Test des Röntgendetektors für ABRIXAS in der Panter-Testanlage des Max-Planck-Instituts für extraterrestrische Physik. Für das NASA "Dark Universe Observatory" (DUO) ist eine Weiterentwicklung dieser Kamera vorgesehen.
Bild: Max-Planck-Institut für extraterrestrische Physik


Wafer mit neuartigen CCD-Chips für die DUO-Mission im Halbleiterlabor des Max-Planck-Instituts für extraterrestrische Physik.
Bild: Max-Planck-Institut für extraterrestrische Physik/Halbleiterlabor



Die amerikanische Weltraumagentur NASA plant einen Satelliten zur Erforschung der "Dunklen Energie", die für die erst vor wenigen Jahren entdeckte beschleunigte Expansion des Universums verantwortlich gemacht wird. Kernstück des Satelliten ist eine vom Max-Planck-Institut für extraterrestrische Physik entwickelte neuartige Röntgenkamera in Kombination mit sieben Röntgenteleskopen der Firma Carl Zeiss. Die gemeinsam mit US-amerikanischen Forschungsinstituten unter Leitung von Prof. Richard Griffiths von der Carnegie Mellon University vorgeschlagene Mission "DUO" wurde jetzt mit vier anderen Satelliten-Vorschlägen von der NASA aufgegriffen. In einer fünfmonatigen Studienphase soll nun geprüft werden, wie DUO im Jahr 2007 in eine Erdumlaufbahn gebracht werden kann. Von dort aus soll der auf zwei Jahre geplante Satellit von mehreren zehntausend Galaxienhaufen Daten sammeln, mit deren Hilfe dann neue kosmologische Modelle getestet und die Natur der Dunklen Materie aus der großräumigen Struktur der Galaxienhaufen erschlossen werden sollen.

... mehr zu:
»DUO »Expansion »Galaxienhaufen »Materie »NASA


Die Natur der rätselhaften Dunklen Energie, die das Universum auseinander treibt, ist eine der spannendsten Fragestellungen, der sich Astronomie und Physik heute zu stellen haben. Ihre Beantwortung könnte eine fundamentale Umwälzung der Physik erfordern. Ziel künftiger Experimente ist deshalb die genaue Bestimmung des Anteils der Dunklen Energie am Universum und die Klärung ihrer kosmischen Evolution. Angesichts der fundamentalen Bedeutung, die diesen Fragen zukommt, müssen verschiedene Methoden - unabhängig voneinander - angewandt werden, um wechselseitige Überprüfungen zu ermöglichen, systematische Fehler zu reduzieren und die Gesamtgenauigkeit zu erhöhen. Die erst kürzlich publizierten Ergebnisse des NASA-Satelliten "WMAP" (Wilkinson Microwave Anisotropy Probe) grenzen - in Kombination mit anderen Messungen der Expansion des Universums - die Menge an Dunkler Energie bereits ein. Zu einem ähnlichen Ergebnis hatte bereits die Analyse von Galaxienhaufen mit Hilfe des Röntgensatelliten ROSAT geführt.

Die systematische Röntgenbeobachtung von mehreren zehntausend Galaxienhaufen, also etwa zwanzig Mal mehr als von ROSAT beobachtet wurden, sollen es ermöglichen, die zeitlichen Veränderungen der "Dunklen Energie" noch genauer und vollkommen unabhängig zu bestimmen. Die WMAP-Beobachtungen haben ihre Informationen aus der Frühzeit des Universums vor 13,7 Mrd. Jahren bezogen und diese mit der heutigen Struktur des Kosmos verglichen. Hingegen erlauben Galaxienhaufen eine Diagnose von einem Zeitpunkt an, als das Universum noch nicht einmal halb so alt war, bis heute, und Auskünfte darüber, wann und wo die Effekte der "Dunklen Energie" am größten waren.

DUO setzt auf Synergien aus einem neuen Röntgendetektor, der am Max-Planck-Institut für extraterrestrische Physik ursprünglich für ROSITA, dem geplanten Nachfolger des im Jahr 1999 fehlgeschlagenen Röntgensatelliten "ABRIXAS" entwickelt wurde und auf der Internationalen Raumstation ISS eingesetzt werden soll. Mit DUO ergibt sich eine extrem kostengünstige Möglichkeit, diese technologischen Innovationen zu nutzen und bei der Suche nach der Natur der Dunklen Energie einzusetzen. Während einer Missionszeit von zwei Jahren soll DUO zwei Himmelsdurchmusterungen durchführen: Die erste wird denselben Himmelsbereich wie der optische "Sloan Digital Sky Survey" (SDSS) abdecken. In dieser großflächigen Durchmusterung werden 6.000 Quadratgrad des Himmels und damit etwa 8.000 Galaxienhaufen bis zu einer Entfernung von etwa 6 Milliarden Lichtjahren erfasst.

Eine zweite tiefere Durchmusterung soll in einem Gebiet von 150 Quadratgrad nahe dem galaktischen Südpol etwa 1.800 Galaxienhaufen bis zu Entfernungen von 8 Milliarden Lichtjahren entdecken. Die Durchmusterungsregion wird so gewählt, dass sie mit den geplanten tieferen Durchmusterungen des Mikrowellen-Hintergrunds überlappt, so dass durch die Kombination von Röntgen- und Mikrowellendaten bessere Ergebnisse in beiden Frequenzbändern erzielt werden. Diese Kombination würde auch Synergien mit anderen in Deutschland durchgeführten Projekten, speziell aber mit dem vom Max-Planck-Institut für Radioastronomie geleiteten APEX-Experiment, eröffnen.

Aus deutscher Sicht würde mit DUO ein großer Teil der Investitionen in ABRIXAS wissenschaftlich amortisiert. Zusätzlich soll ein Industrieauftrag von der NASA an die Firma Carl Zeiss zum Bau des Spiegelsystems ergehen. Das DUO-Team verfügt über einen großen Erfahrungsschatz, der zusammen mit erprobter Hardware und bereits weitgehend fertiggestellter Software sicherstellt, dass DUO seinem wissenschaftlichen Anspruch gerecht wird, nämlich Licht zu bringen in das Dunkel der kosmischen "Zwillinge" Materie und Energie, die das Verständnis unseres Universums derzeit noch verwirren.

Hintergrundinformation: Dunkle Energie und Dunkle Materie

Seit Edwin Hubble wissen wir, dass das Universum expandiert. In den letzten Jahren wurde die Hubble-Konstante, die Rate der kosmologischen Expansion, immer genauer vermessen. Der heute von den meisten Kosmologen akzeptierte Wert der Expansionsgeschwindigkeit liegt bei 70 km/s/Mpc. Er gibt an, mit welcher Geschwindigkeit in "Kilometern pro Sekunde pro Megaparsec" sich das Universum ausdehnt. Ein Parsec sind 3,2 Lichtjahre, ein Megaparsec eine Million Parsec, also 3,2 Millionen Lichtjahre. Eine Hubble-Konstante von 70 bedeutet also, dass der Abstand einer 3,2 Millionen Lichtjahre von uns entfernten Galaxie durch die Raumexpansion pro Sekunde um 70 Kilometer wächst.

Wie die Expansion des Universums weitergeht, hängt von seiner mittleren Energiedichte ab. Wäre diese Dichte höher als die "kritische Dichte", die dem winzigen Wert von etwa sechs Wasserstoffatomen pro Kubikmeter entspricht, würde sich die Expansion des Universums immer mehr verlangsamen und schließlich, weit in der Zukunft, umkehren. Das Universum würde in einem Kollaps, einem so genannten "Big Crunch" enden. Ein derartiges Universum wird auch als "geschlossen" bezeichnet.

Die gesammelte Masse sämtlicher leuchtender Sterne im Universum entspricht jedoch nur etwa 0,5 Prozent der kritischen Dichte und die mittlere Dichte der in galaktischen und intergalaktischen Gaswolken verteilten "gewöhnlichen" (so genannten baryonischen) Materie chemischer Elemente beträgt nur etwa vier Prozent der kritischen Dichte. Aus der Dynamik von Galaxien, und insbesondere aus der Beobachtung von Galaxienhaufen - der größten zusammenhängenden Objekte im Universum - lässt sich ableiten, dass die gewöhnliche Materie nur einen Bruchteil zur gesamten Masse im Universum beiträgt. Diese wird vielmehr durch die "Dunkle Materie" dominiert- eine bisher noch rätselhafte Materieform, die aus sich relativ langsam bewegenden und nur schwach wechselwirkenden, aber bisher noch unentdeckten Teilchen bestehen muss. Doch immer genauere Messungen haben in den letzten Jahren gezeigt, dass auch die Dunkle Materie nicht für ein geschlossenes Universum ausreicht. Die mittlere Materiedichte beträgt nach den jüngsten umfangreichen Auswertungen von ROSAT-Messungen an Galaxienhaufen nur etwa 30 Prozent der kritischen Dichte, wodurch eine Umkehrung der Expansion in einen Kollaps ausgeschlossen erscheint. Das Universum müsste demnach "offen" sein.

Eine große Überraschung war aber der im Jahre 2000 durch zwei vollkommen unabhängige Methoden abgeleitete Befund, dass sich nicht nur die Ausdehnung des Universums in alle Ewigkeit fortsetzen wird, sondern dass sich diese Expansion immer noch beschleunigt. Als Einstein 1916 die Allgemeine Relativitätstheorie entwickelte, stellte er fest, dass seine Gleichungen kein stabiles Universum, sondern ein Universum vorhersagten, das sich entweder ausdehnen oder kollabieren musste. Da zu diesem Zeitpunkt die Fluchtbewegung der Galaxien noch nicht bekannt war, führte er in seine Gleichungen ein zusätzliches, stabilisierendes Glied ein, die so genannte "kosmologische Konstante". Nach Hubble’s Entdeckung der Galaxienfluchtbewegung bezeichnete Einstein seine Konstante als die "größte Eselei" seines Lebens. Doch die neuesten Messungen aus den Fluktuationen der Mikrowellen-Hintergrundstrahlung und aus der Helligkeit entfernter Supernova-Explosionen lassen darauf schließen, dass Einstein unvermutet doch Recht behalten hat, und dass die der kosmologischen Konstanten äquivalente Energiedichte signifikant größer als Null ist. Diese bisher vollkommen unverstandene "Dunkle Energie" hat, in gleichen Einheiten angegeben wie die Materiedichte, ungefähr den Wert 0.7 und dominiert damit die Gesamtenergie im Universum.

Aus der Vermessung der quasi-periodischen Fluktuationen der Mikrowellen-Hintergrundstrahlung, zunächst mit Ballon-Experimenten in kleinen Himmelsausschnitten und zuletzt mit dem WMAP-Satelliten der NASA, ergab sich erstaunlicherweise, dass die Gesamtenergie im Universum, also die Summe aus der Materiedichte und der "Dunklen Energie" sehr nahe bei dem Wert 1 liegt und die Geometrie des Universums demnach nahezu "flach" ist, also konsistent ist mit der Inflationstheorie des Urknalls. Diese Beobachtungen zusammen lassen keinen Zweifel daran, dass das Universum nur zu vier Prozent aus "normaler" Materie, aber zu 73 Prozent aus Dunkler Energie und zu 23 Prozent aus Dunkler Materie besteht. Die einfachste Interpretation der heute bekannten kosmologischen Parameter ergibt damit ein Universum, das in einem Urknall begann und sich in alle Ewigkeit exponentiell ausdehnen wird.

Weitere Informationen erhalten Sie von:

Dr. Peter Predehl
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: 089-30000-3505, Fax: -3569
E-Mail: predehl@mpe.mpg.de

Dr. Peter Predehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpe.mpg.de
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/1998/pri13_98.htm

Weitere Berichte zu: DUO Expansion Galaxienhaufen Materie NASA

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften