Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomare Korngrenze im Mikroskop gesichtet

04.11.2003


Stuttgarter Max-Planck-Forschern gelingt Abbildung von Korngrenzen in Keramiken mit atomarer Auflösung


Elektronenmikroskopische Aufnahmen von Strontiumtitanat in drei unterschiedlichen Projektionen. Links unten ist in Farbe die Position der Atomsäulen markiert. Rechts unten ist das mit Hilfe der Computersimulation erhaltene Bild eingesetzt. In der Abbildung erscheinen in Bild A die gemischten Strontium–Sauerstoff-Säulen sowie die Titan- und reinen Sauerstoff-Säulen mit hellem Kontrast, in Bild B die gemischten Strontium-Sauerstoff-Säulen dunkel, die Sauerstoff-Säulen dagegen hell und in Bild C die Titan-Sauerstoff-Säulen und die Strontium-Säulen hell, wobei die Sauerstoff-Säule einen stärkeren Kontrast zeigen. In Bild A wurde an der mit einem weißen Pfeil markierten Stelle eine Sauerstoff-Säule entfernt, was eine deutliche Kontraständerung zur Folge hat.
Bild: Max-Planck-Institut für Metallforschung


Bild A zeigt eine Korngrenze in Strontiumtitanat und ihr Intensitätsprofil (unten links). An der mit einem Pfeil gekennzeichneten Sauerstoff-Position ist die Intensität deutlich höher als an anderen entsprechenden Positionen. Bild B zeigt eine Simulation der Struktur. An der mit einem weißen Pfeil gekennzeichneten Position befand sich im Simulationsmodell eine nur halb besetzte Sauerstoff-Säule. Das Intensitätsprofil zeigt an dieser Stelle einen deutlich höheren Wert.
Bild: Max-Planck-Institut für Metallforschung



Die atomare Struktur der Oxidkeramik Strontiumtitanat haben Wissenschaftler des Max-Planck-Instituts für Metallforschung mit einem der weltweit leistungsfähigsten Hochspannungs-Höchstauflösungs- Elektronenmikroskope abgebildet. Dabei gelang es auch, die leichten Sauerstoffatome direkt sichtbar zu machen. Diese Art von Aufnahmen dienen dazu, die atomare und chemische Natur von Korngrenzen in Materialien detailliert zu analysieren. Erst vor wenigen Monaten war es mit anderen Methoden der hochauflösenden Elektronenmikroskopie gelungen, Sauerstoff-Atomsäulen in oxidischen Materialien erstmals direkt abzubilden. Die Stuttgarter Aufnahmen von sauerstoffhaltigen Korngrenzen sind jetzt ein weiterer wichtiger Schritt auf dem Weg, um die Verteilung des Sauerstoffs und die Defektstruktur derartiger Materialien exakt im atomaren Maßstab bestimmen zu können (Science, 31. Oktober 2003).



Einzelne Atome im Kristallgitter von Metalloxiden, wie Elektrokeramiken oder Hochtemperatursupraleitern, sichtbar zu machen, ist vor allem bei leichten Elementen wie Sauerstoff eine große Herausforderung für die hochauflösenden Elektronenmikroskopie. Diese leichten Elemente streuen die Elektronen nur schwach und geben im Elektronenmikroskop nur einen unzureichenden Kontrast, der zudem leicht von dem schwererer Atome überdeckt wird, die in den meisten Oxiden den Sauerstoff umgeben.

Die direkte Messung der lokalen Sauerstoffkonzentration mit atomarer Auflösung ist von großem wissenschaftlichem wie industriellem Interesse, da die elektrischen Eigenschaften oxidischer Materialien und die Balance zwischen elektronischer und ionischer Leitfähigkeit ganz wesentlich durch die Anwesenheit von Sauerstoff bestimmt wird. Dabei spielen Fehler im Kristallgitter, wie etwa Korngrenzen, eine besondere Rolle. Korngrenzen sind Grenzflächen bzw. –schichten zwischen Kristallbereichen ("Körnern") gleicher Phase, aber unterschiedlicher Orientierung in polykristallinen Gefügen. Sie haben eine Dicke von nur einem bis etwa fünf Atomdurchmessern.

Korngrenzen sind wichtig für die Funktionsweise von mikroelektronischen Bauelementen, Kondensatoren oder Brennstoffzellen, denn sie haben erheblichen Einfluss auf physikalische Materialeigenschaften wie z.B. elektrische Leitfähigkeit. An solchen Kristallbaufehlern kann die Konzentration des Sauerstoffs deutlich von ihrer mittleren Konzentration im ungestörten Gitter abweichen. Das ist einer der Gründe, warum Korngrenzen in Elektrokeramiken elektrisch geladen sein können und damit eine Barriere gegen die Bewegung von elektrischer Ladung darstellen können.

Die Wissenschaftler des Max-Planck-Instituts für Metallforschung nutzten für ihre Untersuchungen ein eigenes Hochspannungs-Höchstauflösungsmikroskop mit einer Elektronenenergie von 1.250 keV und einer Punktauflösung von 1,2 Angström. Abbildung 1 zeigt mikroskopische Aufnahmen von Strontiumtitanat (SrTiO3) aus drei unterschiedlichen kristallographischen Richtungen. Ihr Vergleich mit Computersimulationen zeigt überzeugend, dass tatsächlich die einzelnen Atome des Materials zu sehen sind. Jeder helle bzw. dunkle Kontrast in den Bildern zeigt also eine Kette von Atomen in einem dreidimensionalen Gitter, eine so genannte Atomsäule. Die Forscher konnten nachweisen, dass die Kontraste an den Orten der Sauerstoff-Säulen wesentlich durch die Zahl der Sauerstoffatome bestimmt werden (Abb. 1a): Dazu hatten sie in der Computersimulation eine Sauerstoffsäule in dem virtuellen Kristallgitter entfernt. Man sieht deutlich, dass sich dadurch der Kontrast an der entsprechenden Stelle des Bildes signifikant verändert hat (siehe weißer Pfeil in Abb. 1).

Das elektronenmikroskopische Bild einer speziellen Korngrenze in Strontiumtitanat ist in Abb. 2a zu sehen. Wiederum zeigt der Vergleich mit der Computersimulation, dass die Sauerstoff-Atomsäulen nicht nur im ungestörten Kristallgitter, sondern auch an der Korngrenze abgebildet sind. Aus dieser Aufnahme kann direkt entnommen werden, dass die Korngrenzenebene aus alternierend angeordneten Strontium–Sauerstoff- und Titan-Atomsäulen aufgebaut ist. Besonders interessant ist die Beobachtung, dass das Intensitäts-Profil entlang der Korngrenze deutliche Fluktuationen an den Sauerstoff-Positionen aufweist. Computersimulationen zeigen, dass die Intensitäts-Fluktuationen auf fehlende Sauerstoffatome zurückgeführt werden können (Abb.2b). Daraus lassen sich voraussichtlich direkte Aufschlüsse über die Sauerstoff-Konzentration entlang der Korngrenze gewinnen.

Die hohe Bildqualität sowie die einfache Interpretierbarkeit der elektronenmikroskopischen Aufnahmen erlaubte zudem, die Atompositionen mit einer Genauigkeit von nur 5 Pikometern zu bestimmen. Es stellte sich heraus, dass sich benachbarte Titan-Säulen an der Korngrenze gegenseitig abstoßen, was vermutlich durch die hohe positive Ladung der Titan-Ionen verursacht wird. Im Gegenzug verringern sich die Abstände der Strontium-Sauerstoff-Säulen. Insgesamt ergibt sich eine Aufweitung der Korngrenze gegenüber einem starren Gittermodell um 43 Pikometer. Dies steht in sehr guter Übereinstimmung mit theoretischen Dichtefunktional-Rechnungen.

Nachdem es kürzlich in der Jülicher Arbeitsgruppe um Professor Knut Urban unter Verwendung neuartiger Elektronenlinsen gelungen war, Sauerstoffatome in Materialien direkt abzubilden (C.L. Jia, M. Lentzen, K. Urban, Science 299 (2003) 870), zeigen die jetzt vorgestellten Ergebnisse, dass dies auch in der Nähe von Kristallbaufehlern möglich ist. Dies ist ein wichtiger Schritt auf dem Weg, keramische Materialien auf atomarem Maßstab zu verstehen. In zukünftigen Experimenten wird nun die Frage zu beantworten sein, wie diese mikroskopischen Strukturen die makroskopischen Eigenschaften von Materialien, wie zum Beispiel der elektrischen Leitfähigkeit, prägen. Diese Kenntnisse werden es ermöglichen, Vorhersagen von Materialeigenschaften zu überprüfen oder sogar gezielt Materialien mit bestimmten Eigenschaften herzustellen.

Weitere Informationen erhalten Sie von:

Dr. Wilfried Sigle
Max-Planck-Institut für Metallforschung, Stuttgart
Tel.: 0711 689-3525, Fax: -3522
E-Mail: sigle@mf.mpg.de

Dr. Wilfried Sigle | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mf.mpg.de

Weitere Berichte zu: ABB Computersimulation Korngrenze Kristallgitter Sauerstoff Sauerstoffatom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte