Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Münchner Forscher bauen ersten Quanten-Abakus

30.10.2003


Messsignal für unterschiedliche Gesamtzustände eines Quantengatters: Findet keine Wechselwirkung zwischen den Atomen statt (hinteres Bild), zeigt sich ein deutliches Materie-Interferenzmuster. Kommt es zu Wechselwirkungen benachbarter Atomen, so wird eine Verschränkung aufgebaut, was im Idealfall eines hochgradig verschränkten Zustands zu einem völligen Verlust der Interferenzfähigkeit führt (Bild Mitte). Der Prozess kann so gut kontrolliert werden, so dass sich die aufgebaute Verschränkung auch wieder vollständig abbaut, was zu einem eindrucksvollen Wiederaufleben des Materie-Interferenzmusters führt (vorderes Bild).
Bild: Max-Planck-Institut für Quantenoptik



Wirkungsweise der Quantengatter: Im Anfangszustand (a) befindet sich ein Atom pro Gitterplatz des künstlichen Kristalls aus Licht. Jedes Atom befindet sich in einer Überlagerung aus zwei internen Zuständen (rot und blau). Die Zustände können kontrolliert durch das Licht des optischen Kristalls in verschiedene Richtungen verschoben werden, hier rot nach links und blau nach rechts (b). Kommen die Zustände ursprünglich benachbarter Atome in Kontakt (c), so findet eine kontrollierte Wechselwirkung zwischen den Zuständen statt, die durch die Haltezeit der Atome an demselben Platz kontrolliert werden kann. Nach Rückführen der Zustände an ihre anfängliche Position (d) kann ein hochgradig verschränkter Zustand in der gesamten Kette aufgebaut worden sein. Bild: Max-Planck-Institut für Quantenoptik


Grundlagenforscher verwirklichen in einem Bose-Einstein-Kondensat das erste hochparallele Quantengatter für einen Quantencomputer


In neuesten Experimenten haben Münchner Grundlagenforscher vom Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität eine außerordentliche Kontrolle über Materie am absoluten Nullpunkt erreicht. Dazu präparierten die Wissenschaftler um Immanuel Bloch und Theodor W. Hänsch zunächst eine Art "Rechenregister" aus einzelnen Atomen, die selbst wiederum in einem künstlichen Kristall aus Licht gefangen sind. In der aktuellen Ausgabe der internationalen Fachzeitschrift "nature" berichten die Forscher, wie sie ein hochparalleles Quantengatter durch die kontrollierte Wechselwirkung zwischen benachbarten Atomen realisiert haben (Nature, 30. Oktober 2003). Solche Quantengatter sind ein wichtiger Schritt auf dem Weg zu einem skalierbaren Quantencomputer und eröffnen neue Perspektiven für genaueste Zeitmessungen.

Im Jahr 2001 wurde der Physik-Nobelpreis für bahnbrechende Arbeiten zur Erzeugung von Bose-Einstein-Kondensaten vergeben. Das ist - neben den bisherigen vier Aggregatzuständen fest, flüssig, gasförmig und Plasma - eine völlig neuartige Form von Materie: Wenige Milliardstel Grad über dem absoluten Nullpunkt verlieren die einzelnen Atome eines Gases ihre Eigenständigkeit und verhalten sich wie ein einziges, quantenmechanisches Objekt, eine Art "Superatom". Dieses kollektive Verhalten wurde Anfang der zwanziger Jahre von dem indischen Physiker Satyendra Nath Bose (1894-1974) und Albert Einstein (1879-1955) vorausgesagt. In diesem nach seinen Entdeckern benannten Zustand, dem Bose-Einstein-Kondensat, haben alle Atome dieselben physikalischen Eigenschaften, gemeinsam besetzen sie das tiefstmögliche Energieniveau. Das Kondensat verhält sich wie eine einzige Welle, die Atome marschieren quasi im Gleichschritt.


Jetzt haben Münchner Forscher die Materiewelle eines Bose-Einstein-Kondensats zunächst aufgebrochen und seine einzelnen Atome in ein Lichtgitter aus Tausenden von laserpinzetten-artigen Mikrofallen geladen. Auf diese Weise bildet sich ein so genannter Mott-Isolator-Zustand der Materie, in dem jeder Gitterplatz mit genau einem einzelnen Atom besetzt ist. Dieses Gitter mit mehr als 100.000 Atomen ist Ausgangspunkt für weitere Experimente und stellt ein ideales quantenmechanisches Rechenregister dar. Jedes einzelne Atom in diesem Gitter ist dabei ein so genanntes Quantenbit (Q-Bit) mit zwei internen Zuständen, 0 und 1.

Doch wie kann man nun die zunächst voneinander isolierten Quanten-Bits miteinander in Wechselwirkung bringen? Dazu bedienen sich die Forscher eines "Quanten-Förderbandes", in dem sie die interne Struktur der einzelnen Atome ausnutzen und verschiedene Zustände in verschiedene Richtungen transportieren (siehe Bild 2 (b)). Wählt man nämlich geeignete Werte für Frequenz und Polarisation des für einen solchen Lichtkristall verwendeten Lasers, so kann man erreichen, dass ein Atom im Zustand 0 (rot, siehe Bild 2) zum Beispiel nach links, ein Atom im Zustand 1 (blau, siehe Bild 2) aber nach rechts transportiert wird. Dabei lässt sich über die Polarisation der Laserstrahlen genau kontrollieren, wie weit sich die Atome bewegen dürfen.

Eine wichtige Eigenschaft der Quanten-Bits ist nun, dass sie sich nicht nur entweder im Zustand 0 oder 1 befinden können, sondern auch in einem "Überlagerungszustand" aus 0 und 1 präpariert werden können. In einem solchen Überlagerungszustand ist jedes einzelne Atome gleichzeitig in den Zuständen 0 (rot) und 1 (blau). Schaltet man nun das Quantenförderband ein, so spaltet sich das einzelne Atom gewissermaßen auf und bewegt sich gleichzeitig sowohl nach links als auch nach rechts. In dem Gitter aus einzelnen Atomen passiert dies für jedes einzelne Atom. Wenn man das Förderband nur so lange einschaltet, bis sich die Atome um genau einen Gitterplatz bewegt haben, trifft jedes Atom an einem gemeinsamen Gitterplatz auf seinen nächsten Nachbarn (siehe Bild 2 (c)).

Befinden sich zwei Atome an einem Gitterplatz, so kommt es zu einer kontrollierten Stosswechselwirkung zwischen beiden Atomen, die als Grundlage für ein einzelnes Quantengatter dient (Bild 2 (c)). Nach dieser Stosswechselwirkung lässt man das Förderband wieder rückwärts laufen, so dass die Atome zurück zu ihren ursprünglichen Gitterplätzen transportiert werden (siehe Bild 2 (d)). Man könnte zunächst glauben, dass Stöße zwischen Atomen zu einer unkontrollierten Entwicklung des atomaren Systems führen und daher ungeeignet für die komplexe und äußerst empfindliche Realisierung eines Quantengatters sind. Doch Peter Zoller von der Universität Innsbruck und Ignacio Cirac (jetzt Max-Planck-Institut für Quantenoptik, Garching) haben in ihren Arbeiten gezeigt, dass die Stöße bei ultrakalten Temperaturen perfekt kontrollierbar sind.

In einem solchen einzelnen Quantengatter wechselwirkt jedes Atom mit seinen rechten und linken Nachbaratomen gleichzeitig und diese wechselwirken wiederum mit ihren Nachbarn. Der Prozeß kann mit einer Kette von Menschen veranschaulicht werden, in der jeder seinem rechten und linken Nachbarn die Hand gibt; auch entfernte Personen sind dann in gewisser Weise miteinander verbunden, auch wenn sie sich nicht direkt die Hand geben. Durch diese Kette von gleichzeitigen atomaren Wechselwirkungen entstehen Korrelationen zwischen Atomen, auch wenn sie nicht direkt benachbart sind und ein hochparalleles Quantengatter-Netzwerk bildet sich heraus. Die Münchner Theorie-Arbeitsgruppe um Hans Briegel hat berechnet, dass bei der Anwendung dieses Quantengatter Netzwerks ein neuer hochgradig "verschränkter" Zustand in diesem Vielteilchensystem entsteht, der unter anderem auch als "Schaltkreis" für einen Quantencomputer verwendet werden kann. Das Experimentatoren-Team um Immanuel Bloch und Theodor Hänsch konnte nun die Wirkungsweise dieser hochparallelen Quantengatter direkt nachweisen und damit einen wichtigen Schritt in Richtung auf einen skalierbaren Quantencomputer vollziehen.

Anders als bei herkömmlichen Computern, bei der eine Rechnung nach der anderen abgearbeitet werden muss, könnten Quantencomputer durch die Überlagerungszustände der Quanten-Bits viele Operationen gleichzeitig ausführen und wären damit für bestimmte Aufgaben den klassischen Rechnern weit überlegen.

Weitere Informationen erhalten Sie von:

Prof. Dr. Immanuel Bloch
Johannes-Gutenberg-Universität, Institut für Physik, Mainz
Tel.: 06131-39-26234, Fax: -25179
E-Mail: bloch@uni-mainz.de

Prof. Dr. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik und
Ludwig-Maximilians-Universität, Garching und München
Tel.: 089-2180-3212, Fax: 089-285192
E-Mail: t.w.haensch@physik.uni-muenchen.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2002/pri0201.htm
http://www.mpq.mpg.de/~haensch/bec
http://www.mpq.mpg.de/~haensch/html/experiments.html

Weitere Berichte zu: Bose-Einstein-Kondensat Quantencomputer Quantengatter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie