Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronensterne als Kanonenkugeln

17.10.2003


Aufnahme des Supernova-Überrests PUPPIS A durch den Röntgensatelliten ROSAT. Der vergrößerte Bildausschnitt zeigt den jungen Neutronenstern, der sich mit etwa 1000 km/s entgegengesetzt zu den hell strahlenden, heißen Gaswolken der Explosion bewegt. (Copyright: S. Snowden, R. Petre (LHEA/GSFC), C. Becker (MIT) et al., ROSAT Project, NASA).


Asymmetrische Gasverteilung im Innern eines explodierenden Sterns eine Sekunde nach Beginn der Explosion. Die Bilder zeigen die Stoßwelle der Explosion in verschiedenen Computersimulationen. Der Neutronenstern befindet sich (nicht sichtbar) im Zentrum. Die Wirbel und Verdichtungen in der Gasströmung entwickeln sich aus zufälligen Schwankungen und sind daher in jedem Modell anders.


Wissenschaftlern vom Max-Planck-Institut für Astrophysik in Garching und der Universität Chicago ist es gelungen, die hohen Raumgeschwindigkeiten beobachteter Neutronensterne zu erklären. Ihre Computermodelle bestätigen den wahrscheinlichen Zusammenhang mit Asymmetrien bei Sternexplosionen.


Sterne mit mehr als der zehnfachen Masse der Sonne beenden ihr Leben in einer spektakulären Supernova-Explosion. Während der größte Teil des Sterngases dabei mit gewaltiger Wucht ausgeschleudert wird, stürzt der Kern im Zentrum des Sterns unter seiner eigenen Schwerkraft in sich zusammen und bildet einen Neutronenstern. Dieser hat etwa eineinhalb mal die Masse der Sonne, sein Durchmesser beträgt aber lediglich 20 Kilometer. In seinem Innern übersteigt die Dichte daher die von Atomkernen.

Einige der bekannten Neutronensterne befinden sich innerhalb des gasförmigen Überrests, der von der vergangenen Sternexplosion zeugt. Das berühmteste Beispiel ist der "Pulsar" im Krebsnebel (Abb.1). Da er sich rund 33 mal pro Sekunde um seine eigene Achse dreht, empfangen wir auf der Erde regelmäßige, pulsartige Signale. Solche rotierenden Neutronensterne heißen deshalb Pulsare. Andere Neutronensterne fliegen jedoch mit sehr hoher Geschwindigkeit vom Ort ihrer Entstehung weg (Abb.2). Sie bewegen sich dabei typischerweise mit mehreren hundert Kilometern pro Sekunde, einige Pulsare sausen gar mit über 1000 Kilometern pro Sekunde durch den interstellaren Raum (Abb.3). Dies ist deutlich schneller als die normale Bewegung der Sterne in der Milchstraße, so dass viele Neutronensterne der Gravitationsanziehung unserer Galaxie entkommen.


Über die Ursache der Pulsargeschwindigkeiten wurde lange Zeit gerätselt. Dabei mangelt es nicht an Erklärungsversuchen, teilweise unter Zuhilfenahme spekulativer oder sehr exotischer physikalischer Phänomene. Der vermutete Zusammenhang mit beobachteten Asymmetrien der Sternexplosionen konnte bislang jedoch nicht schlüssig begründet werden.

Ein Forscherteam vom Max-Planck-Institut für Astrophysik in Garching und vom ASCI Flash Center in Chicago hat nun eine einfache und geradezu natürliche Möglichkeit für einen solchen Zusammenhang aufgezeigt. In Computersimulationen fand das Team, dass bei der Explosion zufällige, kleine Schwankungen im Stern durch Strömungsinstabilitäten rasch anwachsen und sich zu extrem großen Abweichungen von der Kugelgestalt aufschaukeln können (Abb.4, Filme). Die Explosionswelle breitet sich infolgedessen in verschiedene Richtungen unterschiedlich schnell aus. Der zurück bleibende Neutronenstern erhält dadurch einen starken Rückstoß und wird so in Sekunden auf riesige Geschwindigkeiten von vielen hundert Kilometern pro Sekunde beschleunigt (Abb.5).

Die Computermodelle erlauben es erstmals, die gemessenen Pulsargeschwindigkeiten zu verstehen, ohne dass dazu zusätzliche Annahmen notwendig sind. Interessanterweise scheinen die Ergebnisse eine Theorie zu stützen, die seit langem zur Erklärung der Sternexplosion dient (siehe "Wie explodieren massereiche Sterne?"), die jedoch bisher in detaillierten Rechnungen nicht überzeugend bestätigt werden konnte (siehe "Supernova-Problem noch immer ungelöst" ): Die Explosion wird von Neutrinos ausgelöst. Diese ungeladenen, schwach wechselwirkenden Elementarteilchen werden vom heißen Neutronenstern in riesigen Mengen abgestrahlt. Sie heizen das Gas im Innern des Sterns und erzeugen so den Druck, der die Explosion treibt. Dabei bringen sie das Sterngas in heftigste Wallung (wie in den Filmen sichtbar), bis es schließlich ungleichförmig auseinander rast. Der Mechanismus der Explosion, die beobachteten Asymmetrien von Supernovae und die Pulsarbewegungen haben damit eine gemeinsame Ursache.

Hans-Thomas Janka | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Berichte zu: ABB Computermodell Neutronenstern Sternexplosion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten