Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MAGIC eröffnet neues Fenster zum Universum

08.10.2003


Neues Großteleskop auf La Palma untersucht mit extremer Empfindlichkeit die Gamma-Strahlung von fernen Galaxien und explodierenden Sternen


MAGIC, das "Major Atmospheric Gamma Imaging Cherenkov"-Teleskop, geht am 10. Oktober 2003 auf der spanischen Inseln La Palma offiziell in Betrieb. Das weltweit größte Teleskop seiner Art soll mit bisher unerreichter Empfindlichkeit die Gamma-Strahlung aus fernen Galaxien und von explodierenden Sternen untersuchen. Foto: Max-Planck-Institut für Physik


Die elektronische Kamera im Zentrum des MAGIC-Teleskops besteht aus 577 Photomultipliern und erlaubt ultrakurze Belichtungszeiten von wenigen Milliarstel Sekunden. Foto: Max-Planck-Institut für Physik



MAGIC, das weltweit größte Gammastrahlen-Teleskop, wird am 10. Oktober 2003 auf dem Roque de los Muchachos, dem höchsten Berg der spanischen Insel La Palma, in 2225 Metern Höhe, offiziell eingeweiht. Das "Major Atmospheric Gamma Imaging Cherenkov"-Teleskop soll die energiereiche Strahlung von fernen Galaxien, Quasaren und Supernovae-Resten untersuchen und einige der bisher noch ungelösten Probleme der Astrophysik ergründen. Dazu registriert MAGIC die Lichtblitze von "Luftschauern", die beim Eindringen kosmischer Gammaquanten in die Erdatmosphäre entstehen. Mit einem Spiegeldurchmesser von 17 Metern ist MAGIC weltweit das größte und empfindlichste Instrument seiner Art für den bisher weitgehend unerforschten Energiebereich zwischen 20 und 300 Milliarden Elektronenvolt. Mit der Einweihung von MAGIC erfolgt zugleich der "Startschuss" für das Europäische Cherenkov-Observatorium ECO, das in den kommenden Jahren auf La Palma aufgebaut wird, denn MAGIC ist das erste dieses aus mehreren verbundenen Teleskopen bestehenden Systems. MAGIC wird in internationaler Kooperation betrieben: Nahezu einhundert Wissenschaftler aus Deutschland, Italien, Spanien, Finnland, Polen, der Schweiz, Armenien, Russland, Südafrika und den USA beteiligen sich an dem Projekt. Deutschland ist durch das Münchner Max-Planck-Institut für Physik, die Universität Siegen und die Universität Würzburg vertreten. Die Max-Planck-Gesellschaft und das Bundesforschungsministerium tragen mehr als die Hälfte der Investitionskosten von 4,5 Millionen Euro.



Beobachtungen im Gammastrahlen-Bereich des elektromagnetischen Spektrums zählen zu den jüngsten Zweigen in der langen Geschichte der Astronomie. Da die Erdatmosphäre für dieses extrem energiereiche Licht undurchlässig ist, erfordern direkte Beobachtungen den Einsatz von Satelliten oder Raketen. Sie können allerdings nur Gammastrahlung bis zu Energien von maximal einigen zehn Milliarden Elektronenvolt registrieren. Für höhere Energien, wie sie in den Zentren aktiver Galaxien oder in den Überresten explodierter Sterne entstehen, müssen sich die Astronomen mit einem Trick behelfen, da die Gammaquanten aus dem Universum nicht bis zur Erdoberfläche vordringen.

Dazu nutzen die Forscher die Tatsache, dass sich ein hochenergetisches Gammateilchen in den oberen Schichten der Atmosphäre beim Vorbeiflug an einem Atomkern spontan in ein Elektron und in dessen Antiteilchen, ein Positron, umwandeln kann. Beide Teilchen erzeugen wiederum in einer Art Schneeballsystem weitere Sekundär-Teilchen: Eine Teilchenlawine, ein so genannter "Luftschauer", entsteht. Die elektrisch geladenen Teilchen des Schauers, deren Geschwindigkeit höher ist als die Lichtgeschwindigkeit in Luft, emittieren Cherenkov-Licht. Als Cherenkov-Strahlung bezeichnet man eine elektromagnetische Strahlung, die von schnellen elektrischen Teilchen in elektrisch nicht leitenden Medien erzeugt wird, wenn ihre Geschwindigkeit größer ist als die Phasengeschwindigkeit der Strahlung in diesem Medium. Die 1934 von P. A. Cherenkov entdeckte Strahlung breitet sich in Flugrichtung des ursprünglichen Gammateilchens als blauer Blitz aus. Auf der Erdoberfläche beleuchtet solch ein Blitz von wenigen Milliardstel Sekunden Dauer eine Fläche von einigen hundert Metern Durchmesser. Zwar ist seine Intensität für die Beobachtung mit bloßem Auge viel zu schwach, und selbst die bisherigen Luft-Cherenkov-Teleskope konnten lediglich Gammateilchen mit Energien oberhalb von etwa 300 Milliarden Elektronenvolt beobachten.

Das MAGIC-Teleskop wird nun erstmals die Lücke zwischen satellitengestützten und bodengebundenen Experimenten schließen und den Spektralbereich zwischen 20 und einigen 100 Milliarden Elektronenvolt untersuchen, der bisher mangels geeigneter Instrumente einen "weißen Fleck" in der Gamma-Astronomie darstellt. Damit wird ein neues Fenster in der Gamma-Astronomie aufgestoßen.

Das Potential von MAGIC beruht auf dem konzertierten Einsatz neuester Technologien in den zentralen Komponenten des Teleskops, die eine effizientere Lichtsammlung ermöglichen. So war Leichtbau bei allen bewegten Teilen der Schlüssel dazu, um einen Spiegeldurchmesser von 17 Metern realisieren zu können, ohne dabei Kompromisse bei der Positionierungsgeschwindigkeit wichtig für die Beobachtung kurzzeitiger Phänomene wie Gammastrahlungs-Ausbrüche eingehen zu müssen. Erstmals bei einem Cherenkov-Teleskop wird eine ultraleichte Kohlefaser-Gitterrahmenstruktur als Spiegelträger eingesetzt. Auch die 934 Spiegelsegmente bestehen aus Gewichtsgründen nicht aus Glas sondern aus Aluminium, dessen Oberfläche mit diamantbestückten Werkzeugen geformt worden ist. Die Spiegelsegmente selbst sind mit einem computergesteuerten Verstellmechanismus ausgestattet, so dass kleinste Verformungen des Spiegelträgers, wie sie bei Lageänderungen auftreten, automatisch korrigiert werden können. Auf diese Weise bleibt die optische Qualität des Teleskops unabhängig von der Positionierungsrichtung stets gewährleistet.

Die vom Spiegel gesammelten Photonen werden auf eine aus 577 Lichtsensoren bestehende elektronische Kamera fokussiert, die im Brennpunkt des Teleskops angebracht ist und ultrakurze Belichtungszeiten von wenigen Milliardstel Sekunden erlaubt. Für die Kamera nutzt man speziell entwickelte Photomultiplier-Röhren, deren spektrale Empfindlichkeit an das zu beobachtende Cherenkov-Licht angepasst ist. Der Signaltransfer geschieht über ein ultraschnelles optisches Glasfaser-System, das eine nahezu verlustfreie Analog-Übertragung der in der Kamera erzeugten Impulse ermöglicht. Auf diese Weise kann in der Kamera selbst auf schwere Digitalisierungselektronik verzichtet und die Beeinträchtigung durch ein mechanisches Nachschwingen des Kameragehäuses minimiert werden.

Die durch kompromisslose Nutzung technologischer Neuentwicklungen erreichte Empfindlichkeit und schnelle Positionierbarkeit machen MAGIC zum einem weltweit einzigartigen Instrument für die Beobachtung bisher weitgehend ungeklärter astrophysikalischer Prozesse. Damit wird es möglich, bis zu 8 Milliarden Lichtjahre weit ins Universum zu schauen. Wichtige Objekte des Beobachtungsprogramms sind daher auch einige der rätselhaftesten und exotischsten Himmelskörper: Quasare und andere aktive Zentren von Galaxien, Schwarze Löcher, Pulsare und die Überreste von Supernovae, den gewaltigen Explosionen, die dem Lebenszyklus massereicher Sterne ein Ende setzen.

Die wissenschaftlichen Fragestellungen, auf die sich die Physiker dabei Antworten erhoffen, zählen zu den Brennpunkten der modernen Grundlagenforschung. Dazu gehören etwa die Frage, welche Mechanismen die Teilchen der kosmischen Strahlung auf die enormen Energien beschleunigen, aber auch ein besseres Verständnis der Prozesse, die zur Bildung der ältesten Objekte im Kosmos geführt haben, oder die Untersuchung der infraroten Hintergrundstrahlung im Universum und die Überprüfung des Gültigkeitsbereichs der speziellen Relativitätstheorie sowie die Suche nach Effekten der Quantengravitation. Auch die rätselhafte Dunkle Materie, die das Universum erfüllt und über deren Natur bisher nur wenig bekannt ist, könnte für MAGIC beobachtbare Spuren hinterlassen.

Das Teleskop wurde unter Federführung des Münchner Max-Planck-Instituts für Physik in den Jahren 2001 bis 2003 gebaut und in internationaler Kooperation von rund einhundert Wissenschaftlern aus zehn Ländern betrieben. Es ist zugleich das erste Instrument des auf La Palma geplanten Europäischen Cherenkov-Observatoriums ECO. MAGIC soll dazu in den nächsten beiden Jahren durch ein weiteres, weitgehend baugleiches Teleskop ergänzt werden. Dadurch werden dann auch stereoskopische Beobachtungen von Luftschauern möglich, was seine Empfindlichkeit weiter erhöht. Für einen späteren Zeitpunkt ist ein drittes Cherenkov-Teleskop mit einem Spiegeldurchmesser von 34 Metern geplant.

Die Untersuchung der kosmischen Strahlung ist zeitaufwändig und erfordert die Beobachtung zahlreicher Himmelsobjekte. MAGIC ist daher in ein weltumspannendes Netz aus satellitengestützten und bodengebundenen Beobachtungsstationen eingebunden.

Weitere Informationen erhalten Sie von:

Dr. Eckart Lorenz
Max-Planck-Institut für Physik, München
Tel.: 089 32354 - 241, Fax.: - 526
E-Mail: ecl@mppmu.mpg.de

Dr. Eckart Lorenz | Max-Planck-Gesellschaft
Weitere Informationen:
http://magic.mppmu.mpg.de
http://www.mppmu.mpg.de

Weitere Berichte zu: Elektronenvolt Galaxie MAGIC Strahlung Teleskop Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics