Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Gas und Staub sich zu neuen Sternen zusammenballen

19.09.2003


Der Raum zwischen den Sternen ist keineswegs leer. Er enthält Gas und Staub, allerdings unter extremen Bedingungen: Die Temperaturen liegen mit weniger als minus 260 Grad Celsius nur knapp über dem Absoluten Nullpunkt, die Dichte ist unvorstellbar gering - ein Vakuum, das sich auf der Erde nicht verwirklichen lässt.


Prof. Daniel Zajfman, The Weizmann Institute of Science, Rehovot, Israel, ist Träger des erstmals in diesem Jahr von der Minerva-Stiftung verliehenen "Minerva Award".

Foto: The Weizmann Institute of Science, Rehovot, Israel



Dennoch entstehen aus dieser interstellaren ("zwischen den Sternen" vorkommenden) Materie auch heute noch neue Sterne. Um solche Vorgänge zu enträtseln, haben Wissenschaftler die Astrophysik ins Labor geholt. Über dieses faszinierende Thema berichtet der Preisträger des erstmals in diesem Jahr verliehenen "Minerva Award", Prof. Daniel Zajfman, The Weizmann Institute of Science, Rehovot, Israel, in einem Öffentlichen Vortrag (in englischer Sprache) am 23. September 2003, um 19.00 Uhr, in der Alten Universität Heidelberg.

... mehr zu:
»Materie »Molekül »Strahlung »Weltraum


Wichtigstes Instrument bei den Untersuchungen Zajfmans ist der Test Storage Ring (TSR) des Max-Planck-Instituts für Kernphysik in Heidelberg. Damit lassen sich ultrakalte Molekülsorten wie sie im Weltraum vorkommen, herstellen. Und so die grundlegenden physikalischen und chemischen Prozesse untersuchen, die schließlich dazu führen, dass neue Sonnen erstrahlen - aber auch neue Planetensysteme entstehen.

Seit über zwölf Jahren arbeitet Prof. Daniel Zajfman - er wurde 1959 in Belgien geboren und ist 1979 nach Israel ausgewandert - mit Prof. Dirk Schwalm und Prof. Andreas Wolf am Max-Planck-Institut für Kernphysik zusammen. Mehr als 60 wissenschaftliche Arbeiten über Forschungsergebnisse aus Deutschland stammender Studenten am Weizmann-Institut und ihrer Kollegen aus Israel am Heidelberger Max-Planck-Institut sind inzwischen über das Thema veröffentlicht worden.

Ein extrem schwieriges Unterfangen: Versucht man doch in Labors auf der Erde die kosmischen Zustände und Wechselwirkungen zu verstehen, die Tausende von Lichtjahren entfernt stattfinden und das Geschehen in der interstellaren Materie bestimmen.

Die interstellare Materie besteht im wesentlichen aus Gas, also frei umher schwirrenden Atomen und Molekülen, aber auch aus festen, mikroskopischen Partikeln, dem kosmischen Staub. Im Weltall sind diese Bestandteile unterschiedlich dünn verteilt; im interstellaren Gas kommt durchschnittlich nur ein einziges Atom pro Kubikzentimeter Raum vor.

Dass in der Eiseskälte des Alls unter extrem geringem Druck sich Atome begegnen und zu Molekülen zusammenschließen können, galt lange Zeit als äußerst unwahrscheinlich. Erst als die technische Entwicklung immer feinere Analysen der Strahlung aus dem Weltraum möglich gemacht hat, zeigte sich: "Zwischen den Sternen gibt es mehr unterschiedlich aufgebaute Moleküle als in den Sternen selbst", bestätigt Prof. Zajfman. Mehrere Dutzend solcher Weltraummoleküle sind inzwischen anhand ihrer "spektralen Fingerabdrücke" gefunden worden.

Moleküle sind mehr oder weniger zerbrechliche Atomverbände. Im Weltraum sind sie harten Belastungen ausgesetzt, beispielsweise durch Schockwellen oder energieintensive Strahlung. Wenn sie von Lichtteilchen oder anderen Molekülen getroffen werden, beginnen sie unterschiedlich schnell zu rotieren und zu schwingen und wirken dann wie kleine Sendeantennen. Sie strahlen dabei elektromagnetische Wellen ab, die wegen der niedrigen Temperaturen in den "galaktischen Kühlschränken" vor allem im energiearmen Radio- und Infrarot-Bereich mit Teleskopen auf der Erde nachgewiesen werden können. Dabei liefern die Spektrallinien solcher Moleküle nicht nur Informationen über die chemische Zusammensetzung der interstellaren Materie, sondern auch über wichtige physikalische Eigenschaften wie Temperatur, Dichte, Bewegungen oder magnetische Felder.

Im nahezu leeren Weltraum geschieht es nur äußerst selten, dass freie Atome zufällig zusammenstoßen und sich zu Molekülen vereinen. Wesentlich besser stehen die Chancen, wenn einer der Partner elektrisch geladen ist und somit seine Anziehungskraft wächst. Er braucht nur ein Elektron zu verlieren, etwa durch den "Beschuss" mit intensiver kosmischer Strahlung: Neutrale Atome werden so zu elektrisch geladenen Ionen, ebenso wie Moleküle, sofern sie nicht völlig zerschlagen werden, zu chemisch aggressiven "Radikalen". Welche Rolle allerdings die kosmischen Staubteilchen spielen, ist bislang weitgehend unbekannt. Zwischen diesen Teilnehmern findet die "kalte, interstellare Chemie" statt - dies ist das Arbeitsgebiet von Prof. Zajfman.

Prof. Zajfman ist weltweit anerkannter Spezialist für elektrisch geladene Moleküle, besonders von Wasserstoff, einfachen Kohlenwasserstoff-Verbindungen und ionisiertem Sauerstoff. Damit versucht Prof. Zajfman die grundlegenden physikalischen Kräfte besser zu verstehen, die dafür verantwortlich sind, dass im interstellaren Raum Moleküle entstehen, erhalten bleiben oder zu Bruchstücken zerfallen. Für solche atomare Basisdaten, die auch auf der Erde etwa für die Chemie von entscheidender Bedeutung sind, gibt es bisher vor allem aus der Theorie abgeleitete Näherungsberechnungen, doch kaum exakte Messungen, schon gar nicht unter den "exotischen" Bedingungen der interstellaren Materie.

Am Test Storage Ring des Heidelberger Max-Planck-Instituts für Kernphysik ist es dem deutsch-israelischen Forscherteam nun gelungen, einige Prozesswege aufzuklären, über die Moleküle im interstellaren Raum entstehen oder in einzelne Atome zerbrechen und welche Energien dabei freigesetzt werden. Das hat auch den Vergleich der von weit entfernten Weltraummolekülen ausgesendeten Spektren mit den im Labor gewonnenen Daten wesentlich verbessert und neue allgemeine Erkenntnisse über die interstellare Materie gebracht.

Bei seinen Forschungsarbeiten hat Prof. Zajfman außerdem ein naheliegendes Gebiet für seine Untersuchungen entdeckt. Den in Höhen zwischen 80 und 480 Kilometern über der Erdoberfläche Ionosphäre genannten Teil der Lufthülle. Intensive Strahlung von der Sonne trifft auch hier auf häufig vorkommende Moleküle, die dadurch ionisiert werden, also Elektronen einfangen oder verlieren. "Chemische Reaktionen, die in der Ionosphäre stattfinden, beeinflussen die gesamte Atmosphäre", sagt Prof. Zajfman. "Daraus folgt, dass sie auch unser Überleben auf dem Planeten beeinflussen."

Mit einer neuartigen, so genannten Ionenstrahlfalle hat Prof. Zajfman unterdessen ein weiteres Instrument für seine Untersuchungen entwickelt. Damit lassen sich, ähnlich wie im Heidelberger Test Storage Ring, mit Hilfe elektrostatischer Felder "Wolken" aus ionisierten Molekülen speichern - in einer mit nur 50 Zentimetern Länge ungewöhnlich kompakten Anlage. Darin pendeln die Ionen zwischen zwei "Spiegeln" hin und her, ehe sie auf ein Ziel losgelassen und die Reaktionsprodukte identifiziert und gemessen werden können.

Weil in den Zajfmanschen Ionenstrahlfallen auch größere Teilchen unabhängig von ihrer Masse eingeschlossen werden können, haben völlig unerwartet inzwischen auch andere Forschungsgruppen diese Technik übernommen: Zum Beispiel Biologen für Experimente mit langgestreckten Molekülen wie der DNA oder sogar ganzen Viren.

Prof. Zajfmans Forschungsergebnisse stellen einen wichtigen Beitrag dar, die fundamentalen Vorgänge aufzuspüren, durch die sich die interstellare Materie in manchen Regionen des Weltalls so stark zusammenballt, dass unter der Wirkung der Schwerkraft die Temperaturen gewaltig ansteigen und schließlich die nukleare Kernverschmelzung beginnt: Ein neuer Stern ist geboren. Ähnlich sind so vor schätzungsweise sechs Milliarden Jahren auch unsere Sonne und ihre Planeten einschließlich der Erde entstanden.

Weitere Informationen erhalten Sie von:

Prof. Dirk Schwalm
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: 06221 516 - 360
Fax.: 06221 516 - 602
E-Mail: schwalm@mpi-hd.mpg.de

Prof. Dirk Schwalm | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Berichte zu: Materie Molekül Strahlung Weltraum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise