Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutrinoteleskop ANTARES bietet eine einzigartigen Blick in eine ansonsten verborgene Welt

26.08.2003


Skizze des Antares-Detektors


Das Unterseeboot Nautile wird vom Schiff aus ins Wasser gelassen


Fotos: Antares-Kollaboration


Sehen kann man Neutrinos nicht. Sie passieren die Netzhaut genauso unbemerkt, wie sie die Erde in ihrem gesamten Durchmesser durchqueren können, ohne eine Spur zu hinterlassen. Trotzdem eröffnen solche Elementarteilchen tiefere Einblicke.

... mehr zu:
»ANTARES »Materie »Neutrinoteleskop

als das Licht und könnten sogar dunkle Materie sichtbar machen - wenn es gelingt, genügend dieser flüchtigen Informanten einzu-fangen.Am Physikalischen Institut der Universität Erlangen-Nürnberg sind die Lehrstühle von Prof. Dr. Gisela Anton und Prof. Dr. Uli Katz am Neutrinoteleskop ANTARES beteiligt, das zur Zeit in einem europäischen Gemeinschaftsprojekt in 2400 Metern Tiefe vor der Küste von Marseille aufgebaut wird.

Die meisten astronomischen Beobachtungen und Erkenntnisse sind über Jahrhunderte durch schlichtes "Hinschauen" gewonnen worden. Die Erfindung des Fernrohres hat die Möglichkeiten, ferne Objekte zu untersuchen, erheblich gesteigert. Schließlich wurde außer dem sichtbaren Licht auch langwelliges Licht (Radiowellen, Infrarotwellen) und kurzwelliges Licht (UV-Licht, Röntgenstrahlung und Gammastrahlung) genutzt. Solche Messungen haben nicht nur dazu beigetragen, dass wir mit großer Detailkenntnis wissen, wie die Planeten und unsere Sonne, die Sterne unserer Galaxie und andere Galaxien heutzutage aussehen, sondern auch, wie diese Objekte in der Vergangenheit ausgesehen haben und wie sie sich in Zukunft entwickeln werden. Obwohl die Menschheit erst seit wenigen tausend Jahren astronomische Beobachtungen durchführt, können wir Schlüsse auf die Entwicklung unseres Universums über einen zurückliegenden Zeitraum von ca. 14 Milliarden Jahren ziehen.


Aber die Informationen, die man aus dem Licht verschiedener Wellenlängen gewinnen kann, sind beschränkt. Es gibt andere Botschafterteilchen, die wertvolle Informationen vermitteln, z.B. die Neutrinos. Neutrinos sind im Kosmos in sehr großer Zahl vorhanden. Pro Sekunde wird ein menschlicher Körper von vielen Milliarden von Neutrinos durchquert. Das ist ungefährlich, weil Neutrinos nur äußerst selten eine Reaktion mit Materie eingehen und daher die resultierende radioaktive Belastung sehr gering ist. Aber die Sonnenneutrinos liefern ebenso wie das Sonnenlicht Informationen über die Sonne. Mit Hilfe von Neutrino-Teleskopen kann man diese Neutrinos detektieren und so Aufschlüsse gewinnen. Während z.B. das Licht, das im Zentrum der Sonne erzeugt wird, im Mittel einige Jahre benötigt, bis es die Oberfläche der Sonne und acht Minuten später die Erde erreicht, erreichen uns die Neutrinos aus dem Zentrum der Sonne direkt (Flugzeit acht Minuten) und geben wesentliche Informationen über die Fusionsreaktionen, die für die Energieversorgung der Sonne verantwortlich sind.

Für die Astrophysikalische Forschung sind in den letzten Jahren sehr hochenergetische Neutrinos in den Mittelpunkt des Interesses gerückt. Solche Neutrinos mit Energien größer als ca. 1012 eV können z.B. produziert werden, wenn ein schwarzen Loch und ein Begleitstern sich sehr eng umeinander drehen und dabei Materie vom Begleitstern auf das schwarze Loch übergeht. Eine andere mögliche Quelle hochenergetischer Neutrinos könnte in sogenannter kalter "dunkler Materie" bestehen. Diese dunkle Materie könnte im Urknall bei der Geburt unseres Universums produziert worden sein. Sie ist völlig verschieden von der bekannten Materie und kann z.B. nicht Licht aussenden oder reflektieren, weshalb sie eben dunkel ist. Die Teilchen der dunklen Materie können aber zusammenstoßen und dabei Neutrinos erzeugen. Die Messung solcher Neutrinos mit einem Neutrinoteleskop böte also einen einzigartigen Blick in eine ansonsten verborgene Welt.

Da Neutrinos äußerst selten eine Reaktion eingehen, ist es sehr schwierig und aufwändig, Neutrinos zu detektieren. Erschwerend kommt hinzu, dass hochenergetische Neutrinos in relativ geringer Anzahl erzeugt werden. Deshalb benötigt man zum Nachweis hochenergetischer Neutrinos sehr große Detektoren, die üblicherweise in internationalen Kollaborationen entwickelt und betrieben werden, wie z.B. das Antares-Projekt.

Das ANTARES-Teleskop wird aus zwölf "strings" bestehen, die jeder am Boden verankert sind und von einer Boje am 480 m entfernten Ende straff nach oben gehalten werden. Abbildung 2 zeigt das Unterseeboot Nautile, das zum Verlegen von Kabeln benutzt wird, die von den “strings” kommen. Der Roboterarm der Nautile muss unter Wasser bei einem Druck von 250 bar z. B. einen Stecker in die Kupp-lung einer “junction box” drücken. Von dort führt ein 40 km langes Versorgungs- und Datenkabel zur Küste.

Cerenkovlicht: die Bremsspur des Müons

An den “strings” befinden sich auf 25 "Etagen" je drei Photosensoren, die wie große Augen aussehen und die das Cerenkovlicht vermessen sollen, das bei einer Neutrinoreaktion entsteht. Ein Neutrino kann bei einem Stoß mit einem Atomkern des Wassers (Wasserstoffkern oder Sauerstoffkern) ein Müon erzeugen. Dieses Müon fliegt entlang der ursprünglichen Richtung des Neutrinos und legt dabei eine Strecke von ca. 100 m im Wasser zurück. Es emittiert auf diesem Weg gewissermaßen als Bremsspur Cerenkovlicht. Dieses von den Photosensoren nachgewiesene Lichtsignal wird elektronisch aufbereitet, digitalisiert und über das Kabel an Land geschickt, wo es weiter ana-lysiert und gespeichert wird.

Das ANTARES-Teleskop soll bis 2006 fertiggestellt werden. 200 Physiker aus Deutschland, Frankreich, Großbritannien, Italien, den Niederlanden, Russland und Spanien ar-beiten intensiv daran, dieses Projekt zum Erfolg zu führen und die span-nende Suche nach hochenergetischen Neutrinos aufzunehmen, die Aufschluss über faszinierende kosmische Geschehnisse versprechen.

Weitere Informationen

Prof. Dr. Gisela Anton
Lehrstuhl für Experimentalphysik
Tel.: 09131 - 85 -27151
Email: anton@physik.uni-erlangen.de

Prof. Dr. Gisela Anton | Uni Erlangen
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Berichte zu: ANTARES Materie Neutrinoteleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Fehlerfrei ins Quantencomputer-Zeitalter
18.12.2017 | Universität Innsbruck

nachricht „Carmenes“ findet ersten Planeten
18.12.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Carmenes“ findet ersten Planeten

Deutsch-spanisches Forscherteam entwirft, baut und nutzt modernen Spektrografen

Seit Januar 2016 nutzt ein deutsch-spanisches Forscherteam mit Beteiligung der Universität Göttingen den modernen Spektrografen „Carmenes“ für die Suche nach...

Im Focus: Fehlerfrei ins Quantencomputer-Zeitalter

Heute verfügbare Ionenfallen-Technologien eignen sich als Basis für den Bau von großen Quantencomputern. Das zeigen Untersuchungen eines internationalen Forscherteams, deren Ergebnisse nun in der Fachzeitschrift Physical Review X veröffentlicht wurden. Die Wissenschaftler haben für Ionenfallen maßgeschneiderte Protokolle entwickelt, mit denen auftretende Fehler jederzeit entdeckt und korrigiert werden können.

Damit die heute existierenden Prototypen von Quantencomputern ihr volles Potenzial entfalten, müssen sie erstens viel größer werden, d.h. über deutlich mehr...

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Carmenes“ findet ersten Planeten

18.12.2017 | Physik Astronomie

Fehlerfrei ins Quantencomputer-Zeitalter

18.12.2017 | Physik Astronomie

Konsortium erhält 2 Millionen Euro Förderung für neue MR-kompatible elektrophysiologis

18.12.2017 | Medizintechnik