Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutrinoteleskop ANTARES bietet eine einzigartigen Blick in eine ansonsten verborgene Welt

26.08.2003


Skizze des Antares-Detektors


Das Unterseeboot Nautile wird vom Schiff aus ins Wasser gelassen


Fotos: Antares-Kollaboration


Sehen kann man Neutrinos nicht. Sie passieren die Netzhaut genauso unbemerkt, wie sie die Erde in ihrem gesamten Durchmesser durchqueren können, ohne eine Spur zu hinterlassen. Trotzdem eröffnen solche Elementarteilchen tiefere Einblicke.

... mehr zu:
»ANTARES »Materie »Neutrinoteleskop

als das Licht und könnten sogar dunkle Materie sichtbar machen - wenn es gelingt, genügend dieser flüchtigen Informanten einzu-fangen.Am Physikalischen Institut der Universität Erlangen-Nürnberg sind die Lehrstühle von Prof. Dr. Gisela Anton und Prof. Dr. Uli Katz am Neutrinoteleskop ANTARES beteiligt, das zur Zeit in einem europäischen Gemeinschaftsprojekt in 2400 Metern Tiefe vor der Küste von Marseille aufgebaut wird.

Die meisten astronomischen Beobachtungen und Erkenntnisse sind über Jahrhunderte durch schlichtes "Hinschauen" gewonnen worden. Die Erfindung des Fernrohres hat die Möglichkeiten, ferne Objekte zu untersuchen, erheblich gesteigert. Schließlich wurde außer dem sichtbaren Licht auch langwelliges Licht (Radiowellen, Infrarotwellen) und kurzwelliges Licht (UV-Licht, Röntgenstrahlung und Gammastrahlung) genutzt. Solche Messungen haben nicht nur dazu beigetragen, dass wir mit großer Detailkenntnis wissen, wie die Planeten und unsere Sonne, die Sterne unserer Galaxie und andere Galaxien heutzutage aussehen, sondern auch, wie diese Objekte in der Vergangenheit ausgesehen haben und wie sie sich in Zukunft entwickeln werden. Obwohl die Menschheit erst seit wenigen tausend Jahren astronomische Beobachtungen durchführt, können wir Schlüsse auf die Entwicklung unseres Universums über einen zurückliegenden Zeitraum von ca. 14 Milliarden Jahren ziehen.


Aber die Informationen, die man aus dem Licht verschiedener Wellenlängen gewinnen kann, sind beschränkt. Es gibt andere Botschafterteilchen, die wertvolle Informationen vermitteln, z.B. die Neutrinos. Neutrinos sind im Kosmos in sehr großer Zahl vorhanden. Pro Sekunde wird ein menschlicher Körper von vielen Milliarden von Neutrinos durchquert. Das ist ungefährlich, weil Neutrinos nur äußerst selten eine Reaktion mit Materie eingehen und daher die resultierende radioaktive Belastung sehr gering ist. Aber die Sonnenneutrinos liefern ebenso wie das Sonnenlicht Informationen über die Sonne. Mit Hilfe von Neutrino-Teleskopen kann man diese Neutrinos detektieren und so Aufschlüsse gewinnen. Während z.B. das Licht, das im Zentrum der Sonne erzeugt wird, im Mittel einige Jahre benötigt, bis es die Oberfläche der Sonne und acht Minuten später die Erde erreicht, erreichen uns die Neutrinos aus dem Zentrum der Sonne direkt (Flugzeit acht Minuten) und geben wesentliche Informationen über die Fusionsreaktionen, die für die Energieversorgung der Sonne verantwortlich sind.

Für die Astrophysikalische Forschung sind in den letzten Jahren sehr hochenergetische Neutrinos in den Mittelpunkt des Interesses gerückt. Solche Neutrinos mit Energien größer als ca. 1012 eV können z.B. produziert werden, wenn ein schwarzen Loch und ein Begleitstern sich sehr eng umeinander drehen und dabei Materie vom Begleitstern auf das schwarze Loch übergeht. Eine andere mögliche Quelle hochenergetischer Neutrinos könnte in sogenannter kalter "dunkler Materie" bestehen. Diese dunkle Materie könnte im Urknall bei der Geburt unseres Universums produziert worden sein. Sie ist völlig verschieden von der bekannten Materie und kann z.B. nicht Licht aussenden oder reflektieren, weshalb sie eben dunkel ist. Die Teilchen der dunklen Materie können aber zusammenstoßen und dabei Neutrinos erzeugen. Die Messung solcher Neutrinos mit einem Neutrinoteleskop böte also einen einzigartigen Blick in eine ansonsten verborgene Welt.

Da Neutrinos äußerst selten eine Reaktion eingehen, ist es sehr schwierig und aufwändig, Neutrinos zu detektieren. Erschwerend kommt hinzu, dass hochenergetische Neutrinos in relativ geringer Anzahl erzeugt werden. Deshalb benötigt man zum Nachweis hochenergetischer Neutrinos sehr große Detektoren, die üblicherweise in internationalen Kollaborationen entwickelt und betrieben werden, wie z.B. das Antares-Projekt.

Das ANTARES-Teleskop wird aus zwölf "strings" bestehen, die jeder am Boden verankert sind und von einer Boje am 480 m entfernten Ende straff nach oben gehalten werden. Abbildung 2 zeigt das Unterseeboot Nautile, das zum Verlegen von Kabeln benutzt wird, die von den “strings” kommen. Der Roboterarm der Nautile muss unter Wasser bei einem Druck von 250 bar z. B. einen Stecker in die Kupp-lung einer “junction box” drücken. Von dort führt ein 40 km langes Versorgungs- und Datenkabel zur Küste.

Cerenkovlicht: die Bremsspur des Müons

An den “strings” befinden sich auf 25 "Etagen" je drei Photosensoren, die wie große Augen aussehen und die das Cerenkovlicht vermessen sollen, das bei einer Neutrinoreaktion entsteht. Ein Neutrino kann bei einem Stoß mit einem Atomkern des Wassers (Wasserstoffkern oder Sauerstoffkern) ein Müon erzeugen. Dieses Müon fliegt entlang der ursprünglichen Richtung des Neutrinos und legt dabei eine Strecke von ca. 100 m im Wasser zurück. Es emittiert auf diesem Weg gewissermaßen als Bremsspur Cerenkovlicht. Dieses von den Photosensoren nachgewiesene Lichtsignal wird elektronisch aufbereitet, digitalisiert und über das Kabel an Land geschickt, wo es weiter ana-lysiert und gespeichert wird.

Das ANTARES-Teleskop soll bis 2006 fertiggestellt werden. 200 Physiker aus Deutschland, Frankreich, Großbritannien, Italien, den Niederlanden, Russland und Spanien ar-beiten intensiv daran, dieses Projekt zum Erfolg zu führen und die span-nende Suche nach hochenergetischen Neutrinos aufzunehmen, die Aufschluss über faszinierende kosmische Geschehnisse versprechen.

Weitere Informationen

Prof. Dr. Gisela Anton
Lehrstuhl für Experimentalphysik
Tel.: 09131 - 85 -27151
Email: anton@physik.uni-erlangen.de

Prof. Dr. Gisela Anton | Uni Erlangen
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Berichte zu: ANTARES Materie Neutrinoteleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie